49 research outputs found

    Room temperature Peierls distortion in small radius nanotubes

    Get PDF
    By means of {\it ab initio} simulations, we investigate the phonon band structure and electron-phonon coupling in small 4-\AA diameter nanotubes. We show that both the C(5,0) and C(3,3) tubes undergo above room temperature a Peierls transition mediated by an acoustical long-wavelength and an optical q=2kFq=2k_F phonons respectively. In the armchair geometry, we verify that the electron-phonon coupling parameter λ\lambda originates mainly from phonons at q=2kFq=2k_F and is strongly enhanced when the diameter decreases. These results question the origin of superconductivity in small diameter nanotubes.Comment: submitted 21oct2004 accepted 6jan2005 (Phys.Rev.Lett.

    Carbon cage-like materials as potential low work function metallic compounds: Case of clathrates

    Get PDF
    We present an ab-initio calculation of the electronic affinity of the hypothetical C-46 clathrate by studying its bare and hydrogenated (100) surfaces. We show that such a system shares with the diamond phase a small electronic affinity. Further, contrary to the diamond phase, the possibility of doping endohedrally these cage-like systems allows to significantly raise the position of the Fermi level, resulting in a true metal with a small work function. This is illustrated in the case of the Li8@C-46 doped compound. Such a class of materials might be of much interest for the design of electron-emitting devices.Comment: 4 pages, 3 figures, RevTe

    The role of the dopant in the superconductivity of diamond

    Get PDF
    We present an {\it ab initio} study of the recently discovered superconductivity of boron doped diamond within the framework of a phonon-mediated pairing mechanism. The role of the dopant, in substitutional position, is unconventional in that half of the coupling parameter λ\lambda originates in strongly localized defect-related vibrational modes, yielding a very peaked Eliashberg α2F(ω)\alpha^2F(\omega) function. The electron-phonon coupling potential is found to be extremely large and TC_C is limited by the low value of the density of states at the Fermi level

    Theory of superconductivity of carbon nanotubes and graphene

    Full text link
    We present a new mechanism of carbon nanotube superconductivity that originates from edge states which are specific to graphene. Using on-site and boundary deformation potentials which do not cause bulk superconductivity, we obtain an appreciable transition temperature for the edge state. As a consequence, a metallic zigzag carbon nanotube having open boundaries can be regarded as a natural superconductor/normal metal/superconductor junction system, in which superconducting states are developed locally at both ends of the nanotube and a normal metal exists in the middle. In this case, a signal of the edge state superconductivity appears as the Josephson current which is sensitive to the length of a nanotube and the position of the Fermi energy. Such a dependence distinguishs edge state superconductivity from bulk superconductivity.Comment: 5 pages, 2 figure

    Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Get PDF
    The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.Comment: 9 pages, 6 figures, 1 tabl

    Carbon nanotubes as excitonic insulators

    Get PDF
    Fifty years ago Walter Kohn speculated that a zero-gap semiconductor might be unstable against the spontaneous generation of excitons-electron-hole pairs bound together by Coulomb attraction. The reconstructed ground state would then open a gap breaking the symmetry of the underlying lattice, a genuine consequence of electronic correlations. Here we show that this excitonic insulator is realized in zero-gap carbon nanotubes by performing first-principles calculations through many-body perturbation theory as well as quantum Monte Carlo. The excitonic order modulates the charge between the two carbon sublattices opening an experimentally observable gap, which scales as the inverse of the tube radius and weakly depends on the axial magnetic field. Our findings call into question the Luttinger liquid paradigm for nanotubes and provide tests to experimentally discriminate between excitonic and Mott insulators
    corecore