1,595 research outputs found
Renormalization-Group flow for the field strength in scalar self-interacting theories
We consider the Renormalization-Group coupled equations for the effective
potential V(\phi) and the field strength Z(\phi) in the spontaneously broken
phase as a function of the infrared cutoff momentum k. In the k \to 0 limit,
the numerical solution of the coupled equations, while consistent with the
expected convexity property of V(\phi), indicates a sharp peaking of Z(\phi)
close to the end points of the flatness region that define the physical
realization of the broken phase. This might represent further evidence in favor
of the non-trivial vacuum field renormalization effect already discovered with
variational methods.Comment: 10 pages, 3 Figures, version accepted for publication in Phys. Lett.
First lattice evidence for a non-trivial renormalization of the Higgs condensate
General arguments related to ``triviality'' predict that, in the broken phase
of theory, the condensate re-scales by a factor
$Z_{\phi}$ different from the conventional wavefunction-renormalization factor,
$Z_{prop}$. Using a lattice simulation in the Ising limit we measure
$Z_{\phi}=m^2 \chi$ from the physical mass and susceptibility and $Z_{prop}$
from the residue of the shifted-field propagator. We find that the two $Z$'s
differ, with the difference increasing rapidly as the continuum limit is
approached. Since $Z_{\phi}$ affects the relation of to the Fermi
constant it can sizeably affect the present bounds on the Higgs mass.Comment: 10 pages, 3 figures, 1 table, Latex2
Probing Fuzzballs with Particles, Waves and Strings
We probe D1D5 micro-state geometries with massless particles, waves and
strings. To this end, we study geodetic motion, Klein-Gordon equation and
string scattering in the resulting gravitational background. Due to the reduced
rotational symmetry, even in the simple case of a circular fuzzball, the system
cannot be integrated elementarily. Yet, for motion in the plane of the string
profile or in the orthogonal plane to it, one can compute the deflection angle
or the phase shift and identify the critical impact parameter, at which even a
massless probe is captured by the fuzzball if its internal momentum is properly
tuned. We find agreement among the three approaches, thus giving further
support to the fuzzball proposal at the dynamical level.Comment: 35 pages. Extended and improved discussions on the integrability of
the geodetic equations and on the critical impact parameter
An alternative heavy Higgs mass limit
After commenting on the present value of the Higgs particle mass from
radiative corrections, we explore the phenomenological implications of an
alternative, non-perturbative renormalization of the scalar sector where the
mass of the Higgs particle does not represent a measure of observable
interactions at the Higgs mass scale. In this approach the Higgs particle could
be very heavy, even heavier than 1 TeV, and remain nevertheless a relatively
narrow resonance.Comment: 17 pages. Version accepted for publication in Journal of Physics
Use and effectiveness of dapagliflozin in routine clinical practice. An Italian multicenter retrospective study
In randomized controlled trials (RCTs), sodium-glucose co-transporter-2 (SGLT2) inhibitors have been shown to confer glycaemic and extra-glycaemic benefits. The DARWIN-T2D (DApagliflozin Real World evIdeNce in Type 2 Diabetes) study was a multicentre retrospective study designed to evaluate the baseline characteristics of patients receiving dapagliflozin vs those receiving selected comparators (dipeptidyl peptidase-4 inhibitors, gliclazide, or glucagon-like peptide-1 receptor agonists), and drug effectiveness in routine clinical practice. From a population of 281 217, the analysis included 17 285 patients initiating dapagliflozin or comparator glucose-lowering medications (GLMs), 6751 of whom had a follow-up examination. At baseline, participants starting dapagliflozin were younger, had a longer disease duration, higher glycated haemoglobin (HbA1c) concentration, and a more complex history of previous GLM use, but the clinical profile of patients receiving dapagliflozin changed during the study period. Dapagliflozin reduced HbA1c by 0.7%, body weight by 2.7 kg, and systolic blood pressure by 3.0 mm Hg. Effects of comparator GLMs were also within the expected range, based on RCTs. This real-world study shows an initial channelling of dapagliflozin to difficult-to-treat patients. Nonetheless, dapagliflozin provided significant benefits with regard to glucose control, body weight and blood pressure that were in line with findings from RCTs
A survey on tidal analysis and forecasting methods for Tsunami detection
Accurate analysis and forecasting of tidal level are very important tasks for human activities in oceanic and coastal areas. They can be crucial in catastrophic situations like occurrences of Tsunamis in order to provide a rapid alerting to the human population involved and to save lives. Conventional tidal forecasting methods are based on harmonic analysis using the least squares method to determine harmonic parameters. However, a large number of parameters and long-term measured data are required for precise tidal level predictions with harmonic analysis. Furthermore, traditional harmonic methods rely on models based on the analysis of astronomical components and they can be inadequate when the contribution of non-astronomical components, such as the weather, is significant. Other alternative approaches have been developed in the literature in order to deal with these situations and provide predictions with the desired accuracy, with respect also to the length of the available tidal record. These methods include standard high or band pass filtering techniques, although the relatively deterministic character and large amplitude of tidal signals make special techniques, like artificial neural networks and wavelets transform analysis methods, more effective. This paper is intended to provide the communities of both researchers and practitioners with a broadly applicable, up to date coverage of tidal analysis and forecasting methodologies that have proven to be successful in a variety of circumstances, and that hold particular promise for success in the future. Classical and novel methods are reviewed in a systematic and consistent way, outlining their main concepts and components, similarities and differences, advantages and disadvantages
Measurements of the First RF Prototype of the SPIRAL2 Single Bunch Selector
WEPD062International audienceThe single bunch selector of the Spiral2 driver uses 100 travelling wave electrodes driven by fast pulse generators. A 2.5 kV, 1 kW feed-through and a vacuum chamber housing the water cooled electrodes have been designed and built. The paper reviews the whole design and reports the results of first RF and power measurements
Zero mode in the time-dependent symmetry breaking of theory
We apply the quartic exponential variational approximation to the symmetry
breaking phenomena of scalar field in three and four dimensions. We calculate
effective potential and effective action for the time-dependent system by
separating the zero mode from other non-zero modes of the scalar field and
treating the zero mode quantum mechanically. It is shown that the quantum
mechanical properties of the zero mode play a non-trivial role in the symmetry
breaking of the scalar theory.Comment: 10 pages, 3 figure
Slow chopper prototype for the SPIRAL 2PP project
A preliminary prototype of the slow chopper [1] for the Spiral 2 Preparatory Phase project [2] has been designed, developed and tested at INFN-LNS. The final version of the slow chopper will be placed along the beam line common to protons, deuterons and A/Q = 3 ions. This activity report shows the study, the hardware and the measurement results of the chopper prototype
The O(N) Model at Finite Temperature: Renormalization of the Gap Equations in Hartree and Large-N Approximation
The temperature dependence of the sigma meson and pion masses is studied in
the framework of the O(N) model. The Cornwall-Jackiw-Tomboulis formalism is
applied to derive gap equations for the masses in the Hartree and large-N
approximations. Renormalization of the gap equations is carried out within the
cut-off and counter-term renormalization schemes. A consistent renormalization
of the gap equations within the cut-off scheme is found to be possible only in
the large-N approximation and for a finite value of the cut-off. On the other
hand, the counter-term scheme allows for a consistent renormalization of both
the large-N and Hartree approximations. In these approximations, the meson
masses at a given nonzero temperature depend in general on the choice of the
cut-off or renormalization scale. As an application, we also discuss the
in-medium on-shell decay widths for sigma mesons and pions at rest.Comment: 21 pages, 6 figures, typos corrected and refs. added, accepted in
Journal of Physics
- …
