2,387 research outputs found
ADOPTION OF BIOENGINEERED CROPS
Use of crop biotechnology products, such as genetically engineered (GE) crops with input traits for pest management, has risen dramatically since commercial approval in the mid-1990s. This report addresses several of the economic dimensions regarding farmer adoption of bioengineered crops, including herbicidetolerant and insect-resistant varieties. In particular, the report examines: (1) the extent of adoption of bioengineered crops, their diffusion path, and expected adoption rates over the next few years; (2) factors affecting the adoption of bioengineered crops; and (3) farm-level impacts of the adoption of bioengineered crops. Data used in the analysis are mostly from USDA surveys.Biotechnology, technology adoption, genetic engineering, pest management, financial effects, tillage, herbicide-tolerant crops, Bt crops, corn, soybeans, cotton, Crop Production/Industries, Research and Development/Tech Change/Emerging Technologies,
DECOMPOSING THE SIZE EFFECT ON THE ADOPTION OF INNOVATIONS: AGROBIOTECHNOLOGY AND PRECISION FARMING
This study contrasts the relationship between farm-size and adoption for two types of innovations, genetically engineered crops and precision farming, controlling for other factors. The analysis uses an extension of the McDonald and Moffit decomposition for the two-limit Tobit model.Research and Development/Tech Change/Emerging Technologies,
The Computational Power of Beeps
In this paper, we study the quantity of computational resources (state
machine states and/or probabilistic transition precision) needed to solve
specific problems in a single hop network where nodes communicate using only
beeps. We begin by focusing on randomized leader election. We prove a lower
bound on the states required to solve this problem with a given error bound,
probability precision, and (when relevant) network size lower bound. We then
show the bound tight with a matching upper bound. Noting that our optimal upper
bound is slow, we describe two faster algorithms that trade some state
optimality to gain efficiency. We then turn our attention to more general
classes of problems by proving that once you have enough states to solve leader
election with a given error bound, you have (within constant factors) enough
states to simulate correctly, with this same error bound, a logspace TM with a
constant number of unary input tapes: allowing you to solve a large and
expressive set of problems. These results identify a key simplicity threshold
beyond which useful distributed computation is possible in the beeping model.Comment: Extended abstract to appear in the Proceedings of the International
Symposium on Distributed Computing (DISC 2015
Neuroendocrine Regulation of Metabolism
Given the current environment in most developed countries, it is a challenge to maintain a good balance between calories consumed and calories burned, although maintenance of metabolic balance is key to good health. Therefore, understanding how metabolic regulation is achieved and how the dysregulation of metabolism affects health is an area of intense research. Most studies focus on the hypothalamus, which is a brain area that acts as a key regulator of metabolism. Among the nuclei that comprise the hypothalamus, the arcuate nucleus is one of the major mediators in the regulation of food intake. The regulation of energy balance is also a key factor ensuring the maintenance of any species as a result of the dependence of reproduction on energy stores. Adequate levels of energy reserves are necessary for the proper functioning of the hypothalamic-pituitary-gonadal axis. This review discusses valuable data presented in the 2015 edition of the International Workshop of Neuroendocrinology concerning the fundamental nature of the hormonal regulation of the hypothalamus and the impact on energy balance and reproduction.Fil: Cornejo, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Hentges, S.T.. State University of Colorado - Fort Collins; Estados UnidosFil: Maliqueo, M.. Universidad de Chile; ChileFil: Coirini, Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Becu Villalobos, D.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Elias, C. F.. University of Michigan; Estados Unido
Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion
An open-ring ion trap, also referred to as transparent trap was initially
built up to perform - correlation experiments with radioactive
ions. This trap geometry is also well suited to perform experiments with
laser-cooled ions, serving for the development of a new type of Penning trap,
in the framework of the project TRAPSENSOR at the University of Granada. The
goal of this project is to use a single Ca ion as detector for
single-ion mass spectrometry. Within this project and without any modification
to the initial electrode configuration, it was possible to perform Doppler
cooling on Ca ions, starting from large clouds and reaching single
ion sensitivity. This new feature of the trap might be important also for other
experiments with ions produced at Radioactive Ion Beam (RIB) facilities. In
this publication, the trap and the laser system will be described, together
with their performance with respect to laser cooling applied to large ion
clouds down to a single ion.Comment: 9 pages, 13 figure
Beeping a Maximal Independent Set
We consider the problem of computing a maximal independent set (MIS) in an
extremely harsh broadcast model that relies only on carrier sensing. The model
consists of an anonymous broadcast network in which nodes have no knowledge
about the topology of the network or even an upper bound on its size.
Furthermore, it is assumed that an adversary chooses at which time slot each
node wakes up. At each time slot a node can either beep, that is, emit a
signal, or be silent. At a particular time slot, beeping nodes receive no
feedback, while silent nodes can only differentiate between none of its
neighbors beeping, or at least one of its neighbors beeping.
We start by proving a lower bound that shows that in this model, it is not
possible to locally converge to an MIS in sub-polynomial time. We then study
four different relaxations of the model which allow us to circumvent the lower
bound and find an MIS in polylogarithmic time. First, we show that if a
polynomial upper bound on the network size is known, it is possible to find an
MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by
neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if
in addition to this wakeup assumption we allow sender-side collision detection,
that is, beeping nodes can distinguish whether at least one neighboring node is
beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if
instead we endow nodes with synchronous clocks, it is also possible to find an
MIS in O(log^2 n) time.Comment: arXiv admin note: substantial text overlap with arXiv:1108.192
Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV
We report on the highest precision yet achieved in the measurement of the
polarization of a low energy, (1 GeV), electron beam, accomplished
using a new polarimeter based on electron-photon scattering, in Hall~C at
Jefferson Lab. A number of technical innovations were necessary, including a
novel method for precise control of the laser polarization in a cavity and a
novel diamond micro-strip detector which was able to capture most of the
spectrum of scattered electrons. The data analysis technique exploited track
finding, the high granularity of the detector and its large acceptance. The
polarization of the A, ~GeV electron beam was measured with a
statistical precision of ~1\% per hour and a systematic uncertainty of
0.59\%. This exceeds the level of precision required by the \qweak experiment,
a measurement of the vector weak charge of the proton. Proposed future
low-energy experiments require polarization uncertainty ~0.4\%, and this
result represents an important demonstration of that possibility. This
measurement is also the first use of diamond detectors for particle tracking in
an experiment.Comment: 9 pages, 7 figures, published in PR
- …
