3,051 research outputs found
Perfect transmission scattering as a PT-symmetric spectral problem
We establish that a perfect-transmission scattering problem can be described
by a class of parity and time reversal symmetric operators and hereby we
provide a scenario for understanding and implementing the corresponding
quasi-Hermitian quantum mechanical framework from the physical viewpoint. One
of the most interesting features of the analysis is that the complex
eigenvalues of the underlying non-Hermitian problem, associated with a
reflectionless scattering system, lead to the loss of perfect-transmission
energies as the parameters characterizing the scattering potential are varied.
On the other hand, the scattering data can serve to describe the spectrum of a
large class of Schroedinger operators with complex Robin boundary conditions.Comment: 7 pages, 5 figure
Tailoring optical fields emitted by nanometric sources
Here we study a simple way of controlling the emitted fields of
sub-wavelength nanometric sources. The system consists of arrays of
nanoparticles (NPs) embedded in optical active media. The key concept is the
careful tuning of NP's damping factors, which changes the eigenmode's decay
rates of the whole array. This, at long time, leads to a locking of relative
phases and frequencies of individual localized-surfaces-plasmons (LSPs) and,
thus, controlls the emitted field. The amplitude of the LSP's oscillations can
be kept constant by embedding the system in optical active media. In the case
of full loss compensation, this implies that, not only the relative phases, but
also the amplitudes of the LSPs remain fixed, leading us, additionally, to
interpret the process as a new example of synchronization. The proposed
approach can be used as a general way of controlling and designing the
electromagnetic fields emitted by nanometric sources, which can find
applications in optoelectronic, nanoscale lithography and probing microscopy
Testing the Equivalence Principle with Unstable Particles
We develop a framework to test the Equivalence Principle (EP) under
conditions where the quantum aspects of nature cannot be neglected,
specifically in the context of interference phenomena with unstable particles.
We derive the nonrelativistic quantum equation that describes the evolution of
the wavefunction of unstable particles under the assumption of the validity of
the EP and when small deviations are assumed to occur. As an example, we study
the propagation of unstable particles in a COW experiment, and we briefly
discuss the experimental implications of our formalism.Comment: To match the published versio
Adsorption of proteins to thin-films of PDMS and its effect on the adhesion of human endothelial cells
This paper describes a simple and inexpensive procedure to produce thin-films of poly(dimethylsiloxane). Such films were characterized by a variety of techniques (ellipsometry, nuclear magnetic resonance, atomic force microscopy, and goniometry) and used to investigate the adsorption kinetics of three model proteins (fibrinogen, collagen type-I, and bovine serum albumin) under different conditions. The information collected from the protein adsorption studies was then used to investigate the adhesion of human dermal microvascular endothelial cells. The results of these studies suggest that these films can be used to model the surface properties of microdevices fabricated with commercial PDMS. Moreover, the paper provides guidelines to efficiently attach cells in BioMEMS devices.Fil: Chumbimuni Torres, Karin Y.. The University of Texas at San Antonio; Estados UnidosFil: Coronado, Ramon E.. The University of Texas at San Antonio; Estados UnidosFil: Mfuh, Adelphe M.. The University of Texas at San Antonio; Estados UnidosFil: Castro Guerrero, Carlos. The University of Texas at San Antonio; Estados UnidosFil: Silva, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Negrete, George R.. The University of Texas at San Antonio; Estados UnidosFil: Bizios, Rena. The University of Texas at San Antonio; Estados UnidosFil: Garcia, Carlos D.. The University of Texas at San Antonio; Estados Unido
Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups
The syntheses of BEDT-TTF (ET) derivatives with potential metal ion binding pyridyl, bipyridyl and terpyridyl groups are achieved either by stepwise construction of the organosulfur core or via reactions of hydroxymethyl-ET for which a cheap and efficient four step route is reported. The tosylate of hydroxymethyl-ET, reported for the first time, undergoes nucleophilic substitutions with pyridyl, bipyridyl- and terpyridyl-thiolates to give new donors. The X-ray crystal structures of two substituted ET derivatives show considerable deviation of the organosulfur donor system from planarity by bending about the short molecular axis of the ET group
Weak ferromagnetism with very large canting in a chiral lattice: (pyrimidine)2FeCl2
The transition metal coordination compound (pyrimidine)2FeCl2 crystallizes in
a chiral lattice, space group I 4_1 2 2 (or I4_3 2 2). Combined magnetization,
Mossbauer spectroscopy and powder neutron diffraction studies reveal that it is
a canted antiferromagnet below T_N = 6.4 K with an unusually large canting of
the magnetic moments of 14 deg. from their general antiferromagnetic alignment,
one of the largest reported to date. This results in weak ferromagnetism with a
ferromagnetic component of 1 mu_B. The large canting is due to the interplay
between the antiferromagnetic exchange interaction and the local single-ion
anisotropy in the chiral lattice. The magnetically ordered structure of
(pyrimidine)2FeCl2, however, is not chiral. The implications of these findings
for the search of molecule based materials exhibiting chiral magnetic ordering
is discussed.Comment: 6 pages, 5 figure
Metal catalyzed rearrangement of a 2,2'-bipyridine Schiff-base ligand to a quaterpyridine-type complex
- …
