2,838 research outputs found
Performance of AAOmega: the AAT multi-purpose fibre-fed spectrograph
AAOmega is the new spectrograph for the 2dF fibre-positioning system on the
Anglo-Australian Telescope. It is a bench-mounted, double-beamed design, using
volume phase holographic (VPH) gratings and articulating cameras. It is fed by
392 fibres from either of the two 2dF field plates, or by the 512 fibre SPIRAL
integral field unit (IFU) at Cassegrain focus. Wavelength coverage is 370 to
950nm and spectral resolution 1,000-8,000 in multi-Object mode, or 1,500-10,000
in IFU mode. Multi-object mode was commissioned in January 2006 and the IFU
system will be commissioned in June 2006.
The spectrograph is located off the telescope in a thermally isolated room
and the 2dF fibres have been replaced by new 38m broadband fibres. Despite the
increased fibre length, we have achieved a large increase in throughput by use
of VPH gratings, more efficient coatings and new detectors - amounting to a
factor of at least 2 in the red. The number of spectral resolution elements and
the maximum resolution are both more than doubled, and the stability is an
order of magnitude better.
The spectrograph comprises: an f/3.15 Schmidt collimator, incorporating a
dichroic beam-splitter; interchangeable VPH gratings; and articulating red and
blue f/1.3 Schmidt cameras. Pupil size is 190mm, determined by the competing
demands of cost, obstruction losses, and maximum resolution. A full suite of
VPH gratings has been provided to cover resolutions 1,000 to 7,500, and up to
10,000 at particular wavelengths.Comment: 13 pages, 4 figures; presented at SPIE, Astronomical Telescopes and
Instrumentation, 24 - 31 May 2006, Orlando, Florida US
NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules
Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/
Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability.
Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7β1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability
Fusion In The Era Of Burning Plasma Studies: Workforce Planning For 2004-2014
This is the final report of a panel set up by the U.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee (FESAC) in response to a charge letter from Dr. Raymond Orbach (Appendix A), asking FESAC to addressed the issue of workforce development in the U.S. fusion program. This report, submitted to FESAC March 29, 2004 and subsequently approved by them (Appendix B), presents FESAC\u27s response to that charge
Recovering 6D Object Pose: A Review and Multi-modal Analysis
A large number of studies analyse object detection and pose estimation at
visual level in 2D, discussing the effects of challenges such as occlusion,
clutter, texture, etc., on the performances of the methods, which work in the
context of RGB modality. Interpreting the depth data, the study in this paper
presents thorough multi-modal analyses. It discusses the above-mentioned
challenges for full 6D object pose estimation in RGB-D images comparing the
performances of several 6D detectors in order to answer the following
questions: What is the current position of the computer vision community for
maintaining "automation" in robotic manipulation? What next steps should the
community take for improving "autonomy" in robotics while handling objects? Our
findings include: (i) reasonably accurate results are obtained on
textured-objects at varying viewpoints with cluttered backgrounds. (ii) Heavy
existence of occlusion and clutter severely affects the detectors, and
similar-looking distractors is the biggest challenge in recovering instances'
6D. (iii) Template-based methods and random forest-based learning algorithms
underlie object detection and 6D pose estimation. Recent paradigm is to learn
deep discriminative feature representations and to adopt CNNs taking RGB images
as input. (iv) Depending on the availability of large-scale 6D annotated depth
datasets, feature representations can be learnt on these datasets, and then the
learnt representations can be customized for the 6D problem
Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea
Downy mildew caused by Hyaloperonospora brassicae is an economically destructive disease of brassica crops in many growing regions throughout the world. Specialised pathogenicity of downy mildews from different Brassica species and closely related ornamental or wild relatives has been described from host range studies. Pathotypic variation amongst Hyaloperonospora brassicae isolates from Brassica oleracea has also been described; however, a standard set of B. oleracea lines that could enable reproducible classification of H. brassicae pathotypes was poorly developed. For this purpose, we examined the use of eight genetically refined host lines derived from our previous collaborative work on downy mildew resistance as a differential set to characterise pathotypes in the European population of H. brassicae. Interaction phenotypes for each combination of isolate and host line were assessed following drop inoculation of cotyledons and a spectrum of seven phenotypes was observed based on the level of sporulation on cotyledons and visible host responses. Two host lines were resistant or moderately resistant to the entire collection of isolates, and another was universally susceptible. Five lines showed differential responses to the H. brassicae isolates. A minimum of six pathotypes and five major effect resistance genes are proposed to explain all of the observed interaction phenotypes. The B. oleracea lines from this study can be useful for monitoring pathotype frequencies in H. brassicae populations in the same or other vegetable growing regions, and to assess the potential durability of disease control from different combinations of the predicted downy mildew resistance genes
Understanding the errors of SHAPE-directed RNA structure modeling
Single-nucleotide-resolution chemical mapping for structured RNA is being
rapidly advanced by new chemistries, faster readouts, and coupling to
computational algorithms. Recent tests have shown that selective 2'-hydroxyl
acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in
modeling the helices of RNA secondary structure. Here, we benchmark the method
using six molecules for which crystallographic data are available: tRNA(phe)
and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I
ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic
di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs
gave an overall false negative rate (FNR) of 17% and a false discovery rate
(FDR) of 21%, with at least one helix prediction error in five of the six
cases. Extensive variations of data processing, normalization, and modeling
parameters did not significantly mitigate modeling errors. Only one varation,
filtering out data collected with deoxyinosine triphosphate during primer
extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual
structure modeling errors are explained by the insufficient information content
of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping
analysis. Beyond these benchmark cases, bootstrapping suggests a low level of
confidence (<50%) in the majority of helices in a previously proposed
SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA
modeling is not always unambiguous, and helix-by-helix confidence estimates, as
described herein, may be critical for interpreting results from this powerful
methodology.Comment: Biochemistry, Article ASAP (Aug. 15, 2011
Four small puzzles that Rosetta doesn't solve
A complete macromolecule modeling package must be able to solve the simplest
structure prediction problems. Despite recent successes in high resolution
structure modeling and design, the Rosetta software suite fares poorly on
deceptively small protein and RNA puzzles, some as small as four residues. To
illustrate these problems, this manuscript presents extensive Rosetta results
for four well-defined test cases: the 20-residue mini-protein Trp cage, an even
smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease
inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies,
several lines of evidence indicate that conformational sampling is not the
major bottleneck in modeling these small systems. Instead, approximations and
omissions in the Rosetta all-atom energy function currently preclude
discriminating experimentally observed conformations from de novo models at
atomic resolution. These molecular "puzzles" should serve as useful model
systems for developers wishing to make foundational improvements to this
powerful modeling suite.Comment: Published in PLoS One as a manuscript for the RosettaCon 2010 Special
Collectio
- …
