15,520 research outputs found
Detection of coherent light in an incoherent background
The change in position of the self-coherence function minimum is used to detect the presence of a coherent source, rather than the change in strength of the self-coherence function at the reference path difference. The system uses both optical and digital signal processing with MATLAB algorithm. An experimental system was built in the visible band, employing a Michelson interferometer, an interference filter centered in the red, and a silicon photodetector. The results were averaged over up to 50 scans, depending on the relative visibility of the white light and laser fringes, to reduce the scan to scan variability. Amplifier gain was introduced to reduce quantization noise
Topological Approach to Microcanonical Thermodynamics and Phase Transition of Interacting Classical Spins
We propose a topological approach suitable to establish a connection between
thermodynamics and topology in the microcanonical ensemble. Indeed, we report
on results that point to the possibility of describing {\it interacting
classical spin systems} in the thermodynamic limit, including the occurrence of
a phase transition, using topology arguments only. Our approach relies on Morse
theory, through the determination of the critical points of the potential
energy, which is the proper Morse function. Our main finding is to show that,
in the context of the studied classical models, the Euler characteristic
embeds the necessary features for a correct description of several
magnetic thermodynamic quantities of the systems, such as the magnetization,
correlation function, susceptibility, and critical temperature. Despite the
classical nature of the studied models, such quantities are those that do not
violate the laws of thermodynamics [with the proviso that Van der Waals loop
states are mean field (MF) artifacts]. We also discuss the subtle connection
between our approach using the Euler entropy, defined by the logarithm of the
modulus of per site, and that using the {\it Boltzmann}
microcanonical entropy. Moreover, the results suggest that the loss of
regularity in the Morse function is associated with the occurrence of unstable
and metastable thermodynamic solutions in the MF case. The reliability of our
approach is tested in two exactly soluble systems: the infinite-range and the
short-range models in the presence of a magnetic field. In particular, we
confirm that the topological hypothesis holds for both the infinite-range () and the short-range () models. Further studies are very
desirable in order to clarify the extension of the validity of our proposal
Dirac's hole theory versus quantum field theory
Dirac's hole theory and quantum field theory are usually considered
equivalent to each other. For models of a certain type, however, the
equivalence may not hold as we discuss in this Letter. This problem is closely
related to the validity of the Pauli principle in intermediate states of
perturbation theory.Comment: No figure
Doped AB_2 Hubbard Chain: Spiral, Nagaoka and RVB States, Phase Separation and Luttinger Liquid Behavior
We present an extensive numerical study of the Hubbard model on the doped
AB chain, both in the weak coupling and the infinite-U limit. Due to the
special unit cell topology, this system displays a rich variety of phases as
function of hole doping () away from half-filling. Near half-filling,
spiral states develop in the weak coupling regime, while Nagaoka itinerant
ferromagnetism is observed in the infinite-U limit. For higher doping the
system phase-separates before reaching a Mott insulating phase of short-range
RVB states at . Moreover, for we observe a crossover,
which anticipates the Luttinger liquid behavior for .Comment: 11 pages, 13 figure
Magnetism and Electronic Correlations in Quasi-One-Dimensional Compounds
In this contribution on the celebration of the 80th birthday anniversary of
Prof. Ricardo Ferreira, we present a brief survey on the magnetism of
quasi-one-dimensional compounds. This has been a research area of intense
activity particularly since the first experimental announcements of magnetism
in organic and organometallic polymers in the mid 80s. We review experimental
and theoretical achievements on the field, featuring chain systems of
correlated electrons in a special AB2 unit cell structure present in inorganic
and organic compounds
- …
