872 research outputs found

    Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia

    Get PDF
    International audienceHygroscopic properties of aerosol particles in the sub-micrometer and one-micrometer size ranges were measured during the ACE-Asia study (Aerosol Characterization Experiment-Asia) in spring 2001. The measurements took place off the coasts of Japan, Korea, and China. All instruments contributing to this study were deployed in a container on the forward deck of the NOAA Research Vessel Ronald H. Brown. Air masses with primarily marine influence and air masses from the Asian continent affected by both anthropogenic sources and by the transport of desert dust aerosol were encountered during the cruise. Results showed very different hygroscopic behavior in the sub-micrometer size range compared to the one-micrometer size range. In general, for all continentally influenced air masses, the one-micrometer particle population was characterized by two different particle groups ? a nearly hydrophobic fraction with growth factors around 1.0 representative of dust particles and a sea salt fraction with hygroscopic growth factors around 2.0. The number fraction of dust particles was generally about 60% independent of long-range air mass origin. For sub-micrometer particles, a dominant, more hygroscopic particle fraction with growth factors between 1.5 and 1.9 (depending on dry particle size) consistent with ammonium sulfate or non-neutralized sulfates as major component was always found. In marine air masses and for larger sizes within the sub-micrometer range (Dp=250 and 350 nm), a sea salt fraction with growth factors between 2.0 and 2.1 was also observed. For all other air masses, the more hygroscopic particle fraction in the sub-micrometer size range was mostly accompanied by a less hygroscopic particle fraction with growth factors between 1.20 and 1.55 depending on both the continental sources and the dry particle size. Number fractions of this particle group varied between 4 and 39% depending on dry particle size and air mass type. Nearly hydrophobic particles indicating dust particles in the sub-micrometer size regime were only found for particles with Dp=250 and 350 nm during a time period when the aerosol was influenced by transport from Asian desert regions

    Influence of particle size and chemistry on the cloud nucleating properties of aerosols

    Get PDF
    International audienceThe ability of an aerosol particle to act as a cloud condensation nuclei (CCN) is a function of the size of the particle, its composition and mixing state, and the supersaturation of the cloud. In-situ data from field studies provide a means to assess the relative importance of these parameters. During the 2006 Texas Air Quality ? Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS), the NOAA RV Ronald~H.~Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources, chemistry, and size in the activation of particles to form cloud droplets. Measurements were made of CCN concentrations, aerosol chemical composition in the size range relevant for particle activation, and aerosol size distributions. Variability in aerosol composition was parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA) for particle diameters less than 200 nm (vacuum aerodynamic). The HOA mass fraction in this size range was lowest for marine aerosol and highest for aerosol sampled close to anthropogenic sources. Combining all data from the experiment reveals that composition (defined by HOA mass fraction) explains 40% of the variance in the critical diameter for particle activation at 0.44% supersaturation (S). Correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during TexAQS-GoMACCS, composition played a significant role in determining the fraction of particles that could activate to form cloud droplets. In addition, we estimate the error that results in calculated CCN concentrations if the HOA mass fraction is neglected (i.e., a fully soluble composition of (NH4)2SO4 is assumed) for the range of mass fractions and mean diameters observed during the experiment. This error is then related to the source of the aerosol. At 0.22 and 0.44% S, the error is considerable (>50%) for anthropogenic aerosol sampled near the source region as this aerosol had, on average, a high HOA mass fraction in the sub-200 nm diameter size range (vacuum aerodynamic). The error is lower for aerosol distant from anthropogenic source regions as it had a lower HOA mass fraction. Hence, the percent error in calculated CCN concentration is larger for organic-rich aerosol sampled near the source and smaller for aerosol sampled away from sources of anthropogenic particulate organic matter (POM)

    Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis

    Get PDF
    Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment

    Metabolite essentiality elucidates robustness of Escherichia coli metabolism

    Full text link
    Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.Comment: Supplements available at http://stat.kaist.ac.kr/publication/2007/PJKim_pnas_supplement.pd

    A comparison of similar aerosol measurements made on the NASA P3-B, DC-8, and NSF C-130 aircraft during TRACE-P and ACE-Asia

    Get PDF
    Two major aircraft experiments occurred off the Pacific coast of Asia during spring 2001: the NASA sponsored Transport and Chemical Evolution over the Pacific (TRACE-P) and the National Science Foundation (NSF) sponsored Aerosol Characterization Experiment-Asia (ACE-Asia). Both experiments studied emissions from the Asian continent (biomass burning, urban/industrial pollution, and dust). TRACE-P focused on trace gases and aerosol during March/April and was based primarily in Hong Kong and Yokota Air Force Base, Japan, and involved two aircraft: the NASA DC-8 and the NASA P3-B. ACE-Asia focused on aerosol and radiation during April/May and was based in Iwakuni Marine Corps Air Station, Japan, and involved the NSF C-130. This paper compares aerosol measurements from these aircraft including aerosol concentrations, size distributions (and integral properties), chemistry, and optical properties. Best overall agreement (generally within RMS instrumental uncertainty) was for physical properties of the submircron aerosol, including condensation nuclei concentrations, scattering coefficients, and differential mobility analyzer and optical particle counter (OPC) accumulation mode size distributions. Larger differences (typically outside of the RMS uncertainty) were often observed for parameters related to the supermicron aerosols (total scattering and absorption coefficients, coarse mode Forward Scattering Spectrometer Probe and OPC size distributions/integral properties, and soluble chemical species usually associated with the largest particles, e.g., Na+, Cl−, Ca2+, and Mg2+), where aircraft sampling is more demanding. Some of the observed differences reflect different inlets (e.g., low-turbulence inlet enhancement of coarse mode aerosol), differences in sampling lines, and instrument configuration and design. Means and variances of comparable measurements for horizontal legs were calculated, and regression analyses were performed for each platform and allow for an assessment of instrument performance. These results provide a basis for integrating aerosol data from these aircraft platforms for both the TRACE-P and ACE-Asia experiments

    MicroRNA-155 is induced during the macrophage inflammatory response

    Get PDF
    The mammalian inflammatory response to infection involves the induction of several hundred genes, a process that must be carefully regulated to achieve pathogen clearance and prevent the consequences of unregulated expression, such as cancer. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that has also been linked to cancer. However, the relationship between inflammation, innate immunity, and miRNA expression is just beginning to be explored. In the present study, we use microarray technology to identify miRNAs induced in primary murine macrophages after exposure to polyriboinosinic:polyribocytidylic acid or the cytokine IFN-{beta}. miR-155 was the only miRNA of those tested that was substantially up-regulated by both stimuli. It also was induced by several Toll-like receptor ligands through myeloid differentiation factor 88- or TRIF-dependent pathways, whereas up-regulation by IFNs was shown to involve TNF-{alpha} autocrine signaling. Pharmacological inhibition of the kinase JNK blocked induction of miR-155 in response to either polyriboinosinic:polyribocytidylic acid or TNF-{alpha}, suggesting that miR-155-inducing signals use the JNK pathway. Together, these findings characterize miR-155 as a common target of a broad range of inflammatory mediators. Importantly, because miR-155 is known to function as an oncogene, these observations identify a potential link between inflammation and cancer
    corecore