1,272 research outputs found

    End states, ladder compounds, and domain wall fermions

    Get PDF
    A magnetic field applied to a cross linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses.Comment: 10 pages, 4 figures; final version for Phys. Rev. Let

    Lattice QCD-2+1

    Full text link
    We consider a 2+1-dimensional SU(N) lattice gauge theory in an axial gauge with the link field U in the 1-direction set to one. The term in the Hamiltonian containing the square of the electric field in the 1-direction is non-local. Despite this non-locality, we show that weak-coupling perturbation theory in this term gives a finite vacuum-energy density to second order, and suggest that this property holds to all orders. Heavy quarks are confined, the spectrum is gapped, and the space-like Wilson loop has area decay.Comment: Still Latex, 18 pages, no figures, with some further typographical errors corrected. Version to appear in Phys. Rev.

    A multisite microcanonical updating method

    Get PDF
    We have made a study of several update algorithms using the XY model. We find that sequential local overrelaxation is not ergodic at the scale of typical Monte Carlo simulation time. We have introduced a new multisite microcanonical update method, which yields results compatible with those of random overrelaxation and the microcanonical demon algorithm, which are very much slower, all being incompatible with the sequential overrelaxation results.Comment: 13 pages, 4 figure

    Spatial search and the Dirac equation

    Full text link
    We consider the problem of searching a d-dimensional lattice of N sites for a single marked location. We present a Hamiltonian that solves this problem in time of order sqrt(N) for d>2 and of order sqrt(N) log(N) in the critical dimension d=2. This improves upon the performance of our previous quantum walk search algorithm (which has a critical dimension of d=4), and matches the performance of a corresponding discrete-time quantum walk algorithm. The improvement uses a lattice version of the Dirac Hamiltonian, and thus requires the introduction of spin (or coin) degrees of freedom.Comment: 5 pages, 1 figur

    A derivation of Regge trajectories in large-N transverse lattice QCD

    Get PDF
    Large-N QCD is analysed in light-front coordinates with a transverse lattice at strong coupling. The general formalism can be looked up on as a d+n expansion with a stack of d-dimensional hyperplanes uniformly spaced in n transverse dimensions. It can arise by application of the renormalisation group transformations only in the transverse directions. At leading order in strong coupling, the gauge field dynamics reduces to the constraint that only colour singlet states can jump between the hyperplanes. With d=2, n=2 and large-N, the leading order strong coupling results are simple renormalisations of those for the 't Hooft model. The meson spectrum lies on a set of parallel trajectories labeled by spin. This is the first derivation of the widely anticipated Regge trajectories in a regulated systematic expansion in QCD.Comment: Lattice 2000 (spectrum), 5 pages, to appear in the proceeding

    Topological Modes in Dual Lattice Models

    Get PDF
    Lattice gauge theory with gauge group ZPZ_{P} is reconsidered in four dimensions on a simplicial complex KK. One finds that the dual theory, formulated on the dual block complex K^\hat{K}, contains topological modes which are in correspondence with the cohomology group H2(K^,ZP)H^{2}(\hat{K},Z_{P}), in addition to the usual dynamical link variables. This is a general phenomenon in all models with single plaquette based actions; the action of the dual theory becomes twisted with a field representing the above cohomology class. A similar observation is made about the dual version of the three dimensional Ising model. The importance of distinct topological sectors is confirmed numerically in the two dimensional Ising model where they are parameterized by H1(K^,Z2)H^{1}(\hat{K},Z_{2}).Comment: 10 pages, DIAS 94-3

    Abelian Links, Monopoles and Glueballs in SU(2) Lattice Gauge Theory

    Get PDF
    We investigate the masses of 0+ and 2+ glueballs in SU(2) lattice gauge theory using abelian projection to the maximum abelian gauge. We calculate glueball masses using both abelian links and monopole operators. Both methods reproduce the known full SU(2) results quantitatively. Positivity problems present in the abelian projection are discussed. We study the dependence of the glueball masses on magnetic current loop size, and find that the 0+ state requires a much greater range of sizes than does the 2+ state.Comment: 18 pages, latex, 4 postscript figure

    Confinement by Monopoles in the Positive Plaquette Model of SU(2) Lattice Gauge Theory

    Full text link
    Confinement via 't Hooft-Mandelstam monopoles is studied for the positive plaquette model in SU(2) lattice gauge theory. Positive plaquette model configurations are projected into the maximum abelian gauge and the magnetic current extracted. The resulting magnetic current is used to compute monopole contributions to Wilson loops and extract a monopole contribution to the string tension. As was previously found for the Wilson action, the monopole contribution to the string tension agrees with the string tension calculated directly from the SU(2) links. The fact that the positive plaquette model suppresses Z2 monopoles and vortices is discussed.Comment: 8 pages, one Postscript figure, Latex, uses psfig files: posplaq.tex,posplaq.aux,pp_1_3.ps packaged with uufile

    Lattice Gauge Theory -- Present Status

    Full text link
    Lattice gauge theory is our primary tool for the study of non-perturbative phenomena in hadronic physics. In addition to giving quantitative information on confinement, the approach is yielding first principles calculations of hadronic spectra and matrix elements. After years of confusion, there has been significant recent progress in understanding issues of chiral symmetry on the lattice. (Talk presented at HADRON 93, Como, Italy, June 1993.)Comment: 11 pages, BNL-4946

    Necessary and sufficient conditions for non-perturbative equivalences of large N orbifold gauge theories

    Full text link
    Large N coherent state methods are used to study the relation between U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. The classical dynamical systems which reproduce the large N limits of the quantum dynamics in parent and daughter orbifold theories are compared. We demonstrate that the large N dynamics of the parent theory, restricted to the subspace invariant under the orbifold projection symmetry, and the large N dynamics of the daughter theory, restricted to the untwisted sector invariant under "theory space'' permutations, coincide. This implies equality, in the large N limit, between appropriately identified connected correlation functions in parent and daughter theories, provided the orbifold projection symmetry is not spontaneously broken in the parent theory and the theory space permutation symmetry is not spontaneously broken in the daughter. The necessity of these symmetry realization conditions for the validity of the large N equivalence is unsurprising, but demonstrating the sufficiency of these conditions is new. This work extends an earlier proof of non-perturbative large N equivalence which was only valid in the phase of the (lattice regularized) theories continuously connected to large mass and strong coupling.Comment: 21 page, JHEP styl
    corecore