2,586 research outputs found
On the Evidence for Axion-like Particles from Active Galactic Nuclei
Burrage, Davis, and Shaw recently suggested exploiting the correlations
between high and low energy luminosities of astrophysical objects to probe
possible mixing between photons and axion-like particles (ALP) in magnetic
field regions. They also presented evidence for the existence of ALP's by
analyzing the optical/UV and X-ray monochromatic luminosities of AGNs. We
extend their work by using the monochromatic luminosities of 320 unobscured
Active Galactic Nuclei from the Sloan Digital Sky Survey/Xmm-Newton Quasar
Survey (Young et al., 2009), which allows the exploration of 18 different
combinations of optical/UV and X-ray monochromatic luminosities. However, we do
not find compelling evidence for the existence of ALPs. Moreover, it appears
that the signal reported by Burrage et al. is more likely due to X-ray
absorption rather than to photon-ALP oscillation.Comment: 16 pages, 12 figures. Updated to reflect the minor changes introduced
in the published versio
Power Spectra in Global Defect Theories of Cosmic Structure Formation
An efficient technique for computing perturbation power spectra in field
ordering theories of cosmic structure formation is introduced, enabling
computations to be carried out with unprecedented precision. Large scale
simulations are used to measure unequal time correlators of the source stress
energy, taking advantage of scaling during matter and radiation domination, and
causality, to make optimal use of the available dynamic range. The correlators
are then re-expressed in terms of a sum of eigenvector products, a
representation which we argue is optimal, enabling the computation of the final
power spectra to be performed at high accuracy. Microwave anisotropy and matter
perturbation power spectra for global strings, monopoles, textures and
non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure
Detection of the ISW effect and corresponding dark energy constraints made with directional spherical wavelets
Using a directional spherical wavelet analysis we detect the integrated
Sachs-Wolfe (ISW) effect, indicated by a positive correlation between the
first-year Wilkinson Microwave Anisotropy Probe (WMAP) and NRAO VLA Sky Survey
(NVSS) data. Detections are made using both a directional extension of the
spherical Mexican hat wavelet and the spherical butterfly wavelet. We examine
the possibility of foreground contamination and systematics in the WMAP data
and conclude that these factors are not responsible for the signal that we
detect. The wavelet analysis inherently enables us to localise on the sky those
regions that contribute most strongly to the correlation. On removing these
localised regions the correlation that we detect is reduced in significance, as
expected, but it is not eliminated, suggesting that these regions are not the
sole source of correlation between the data. This finding is consistent with
predictions made using the ISW effect, where one would expect weak correlations
over the entire sky. In a flat universe the detection of the ISW effect
provides direct and independent evidence for dark energy. We use our detection
to constrain dark energy parameters by deriving a theoretical prediction for
the directional wavelet covariance statistic for a given cosmological model.
Comparing these predictions with the data we place constraints on the
equation-of-state parameter and the vacuum energy density .
We also consider the case of a pure cosmological constant, i.e. . For
this case we rule out a zero cosmological constant at greater than the 99.9%
significance level. All parameter estimates that we obtain are consistent with
the standand cosmological concordance model values.Comment: 16 pages, 13 figures; replaced to match version accepted by MNRA
The Doppler Peaks from Cosmic Texture
We compute the angular power spectrum of temperature anisotropies on the
microwave sky in the cosmic texture theory, with standard recombination
assumed. The spectrum shows `Doppler' peaks analogous to those in scenarios
based on primordial adiabatic fluctuations such as `standard CDM', but at quite
different angular scales. There appear to be excellent prospects for using this
as a discriminant between inflationary and cosmic defect theories.Comment: 14 pages, latex, 3 figures, compressed and uuencoded, replaced
version has minor typographical correction
The evolution of bits and bottlenecks in a scientific workflow trying to keep up with technology: Accelerating 4D image segmentation applied to nasa data
In 2016, a team of earth scientists directly engaged a team of computer scientists to identify cyberinfrastructure (CI) approaches that would speed up an earth science workflow. This paper describes the evolution of that workflow as the two teams bridged CI and an image segmentation algorithm to do large scale earth science research. The Pacific Research Platform (PRP) and The Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI) resources were used to significantly decreased the earth science workflow's wall-clock time from 19.5 days to 53 minutes. The improvement in wall-clock time comes from the use of network appliances, improved image segmentation, deployment of a containerized workflow, and the increase in CI experience and training for the earth scientists. This paper presents a description of the evolving innovations used to improve the workflow, bottlenecks identified within each workflow version, and improvements made within each version of the workflow, over a three-year time period
Probing Dark Energy with the Kunlun Dark Universe Survey Telescope
Dark energy is an important science driver of many upcoming large-scale
surveys. With small, stable seeing and low thermal infrared background, Dome A,
Antarctica, offers a unique opportunity for shedding light on fundamental
questions about the universe. We show that a deep, high-resolution imaging
survey of 10,000 square degrees in \emph{ugrizyJH} bands can provide
competitive constraints on dark energy equation of state parameters using type
Ia supernovae, baryon acoustic oscillations, and weak lensing techniques. Such
a survey may be partially achieved with a coordinated effort of the Kunlun Dark
Universe Survey Telescope (KDUST) in \emph{yJH} bands over 5000--10,000 deg
and the Large Synoptic Survey Telescope in \emph{ugrizy} bands over the same
area. Moreover, the joint survey can take advantage of the high-resolution
imaging at Dome A to further tighten the constraints on dark energy and to
measure dark matter properties with strong lensing as well as galaxy--galaxy
weak lensing.Comment: 9 pages, 6 figure
Recovering the Inflationary Potential
A procedure is developed for the recovery of the inflationary potential over
the interval that affects astrophysical scales (\approx 1\Mpc - 10^4\Mpc).
The amplitudes of the scalar and tensor metric perturbations and their
power-spectrum indices, which can in principle be inferred from large-angle CBR
anisotropy experiments and other cosmological data, determine the value of the
inflationary potential and its first two derivatives. From these, the
inflationary potential can be reconstructed in a Taylor series and the
consistency of the inflationary hypothesis tested. A number of examples are
presented, and the effect of observational uncertainties is discussed.Comment: 13 pages LaTeX, 6 Figs. available on request, FNAL-Pub-93/182-
Galactic periodicity and the oscillating G model
We consider the model involving the oscillation of the effective
gravitational constant that has been put forward in an attempt to reconcile the
observed periodicity in the galaxy number distribution with the standard
cosmological models. This model involves a highly nonlinear dynamics which we
analyze numerically. We carry out a detailed study of the bound that
nucleosynthesis imposes on this model. The analysis shows that for any assumed
value for (the total energy density) one can fix the value of
(the baryonic energy density) in such a way as to
accommodate the observational constraints coming from the
primordial abundance. In particular, if we impose the inflationary value
the resulting baryonic energy density turns out to be . This result lies in the very narrow range allowed by the observed values of the primordial
abundances of the other light elements. The remaining fraction of
corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for
figures. A more careful study of the model appears in gr-qc/960603
- …
