2,586 research outputs found

    On the Evidence for Axion-like Particles from Active Galactic Nuclei

    Get PDF
    Burrage, Davis, and Shaw recently suggested exploiting the correlations between high and low energy luminosities of astrophysical objects to probe possible mixing between photons and axion-like particles (ALP) in magnetic field regions. They also presented evidence for the existence of ALP's by analyzing the optical/UV and X-ray monochromatic luminosities of AGNs. We extend their work by using the monochromatic luminosities of 320 unobscured Active Galactic Nuclei from the Sloan Digital Sky Survey/Xmm-Newton Quasar Survey (Young et al., 2009), which allows the exploration of 18 different combinations of optical/UV and X-ray monochromatic luminosities. However, we do not find compelling evidence for the existence of ALPs. Moreover, it appears that the signal reported by Burrage et al. is more likely due to X-ray absorption rather than to photon-ALP oscillation.Comment: 16 pages, 12 figures. Updated to reflect the minor changes introduced in the published versio

    Power Spectra in Global Defect Theories of Cosmic Structure Formation

    Full text link
    An efficient technique for computing perturbation power spectra in field ordering theories of cosmic structure formation is introduced, enabling computations to be carried out with unprecedented precision. Large scale simulations are used to measure unequal time correlators of the source stress energy, taking advantage of scaling during matter and radiation domination, and causality, to make optimal use of the available dynamic range. The correlators are then re-expressed in terms of a sum of eigenvector products, a representation which we argue is optimal, enabling the computation of the final power spectra to be performed at high accuracy. Microwave anisotropy and matter perturbation power spectra for global strings, monopoles, textures and non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure

    Detection of the ISW effect and corresponding dark energy constraints made with directional spherical wavelets

    Get PDF
    Using a directional spherical wavelet analysis we detect the integrated Sachs-Wolfe (ISW) effect, indicated by a positive correlation between the first-year Wilkinson Microwave Anisotropy Probe (WMAP) and NRAO VLA Sky Survey (NVSS) data. Detections are made using both a directional extension of the spherical Mexican hat wavelet and the spherical butterfly wavelet. We examine the possibility of foreground contamination and systematics in the WMAP data and conclude that these factors are not responsible for the signal that we detect. The wavelet analysis inherently enables us to localise on the sky those regions that contribute most strongly to the correlation. On removing these localised regions the correlation that we detect is reduced in significance, as expected, but it is not eliminated, suggesting that these regions are not the sole source of correlation between the data. This finding is consistent with predictions made using the ISW effect, where one would expect weak correlations over the entire sky. In a flat universe the detection of the ISW effect provides direct and independent evidence for dark energy. We use our detection to constrain dark energy parameters by deriving a theoretical prediction for the directional wavelet covariance statistic for a given cosmological model. Comparing these predictions with the data we place constraints on the equation-of-state parameter ww and the vacuum energy density ΩΛ\Omega_\Lambda. We also consider the case of a pure cosmological constant, i.e. w=1w=-1. For this case we rule out a zero cosmological constant at greater than the 99.9% significance level. All parameter estimates that we obtain are consistent with the standand cosmological concordance model values.Comment: 16 pages, 13 figures; replaced to match version accepted by MNRA

    The Doppler Peaks from Cosmic Texture

    Get PDF
    We compute the angular power spectrum of temperature anisotropies on the microwave sky in the cosmic texture theory, with standard recombination assumed. The spectrum shows `Doppler' peaks analogous to those in scenarios based on primordial adiabatic fluctuations such as `standard CDM', but at quite different angular scales. There appear to be excellent prospects for using this as a discriminant between inflationary and cosmic defect theories.Comment: 14 pages, latex, 3 figures, compressed and uuencoded, replaced version has minor typographical correction

    The evolution of bits and bottlenecks in a scientific workflow trying to keep up with technology: Accelerating 4D image segmentation applied to nasa data

    Get PDF
    In 2016, a team of earth scientists directly engaged a team of computer scientists to identify cyberinfrastructure (CI) approaches that would speed up an earth science workflow. This paper describes the evolution of that workflow as the two teams bridged CI and an image segmentation algorithm to do large scale earth science research. The Pacific Research Platform (PRP) and The Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI) resources were used to significantly decreased the earth science workflow's wall-clock time from 19.5 days to 53 minutes. The improvement in wall-clock time comes from the use of network appliances, improved image segmentation, deployment of a containerized workflow, and the increase in CI experience and training for the earth scientists. This paper presents a description of the evolving innovations used to improve the workflow, bottlenecks identified within each workflow version, and improvements made within each version of the workflow, over a three-year time period

    Probing Dark Energy with the Kunlun Dark Universe Survey Telescope

    Full text link
    Dark energy is an important science driver of many upcoming large-scale surveys. With small, stable seeing and low thermal infrared background, Dome A, Antarctica, offers a unique opportunity for shedding light on fundamental questions about the universe. We show that a deep, high-resolution imaging survey of 10,000 square degrees in \emph{ugrizyJH} bands can provide competitive constraints on dark energy equation of state parameters using type Ia supernovae, baryon acoustic oscillations, and weak lensing techniques. Such a survey may be partially achieved with a coordinated effort of the Kunlun Dark Universe Survey Telescope (KDUST) in \emph{yJH} bands over 5000--10,000 deg2^2 and the Large Synoptic Survey Telescope in \emph{ugrizy} bands over the same area. Moreover, the joint survey can take advantage of the high-resolution imaging at Dome A to further tighten the constraints on dark energy and to measure dark matter properties with strong lensing as well as galaxy--galaxy weak lensing.Comment: 9 pages, 6 figure

    Recovering the Inflationary Potential

    Full text link
    A procedure is developed for the recovery of the inflationary potential over the interval that affects astrophysical scales (\approx 1\Mpc - 10^4\Mpc). The amplitudes of the scalar and tensor metric perturbations and their power-spectrum indices, which can in principle be inferred from large-angle CBR anisotropy experiments and other cosmological data, determine the value of the inflationary potential and its first two derivatives. From these, the inflationary potential can be reconstructed in a Taylor series and the consistency of the inflationary hypothesis tested. A number of examples are presented, and the effect of observational uncertainties is discussed.Comment: 13 pages LaTeX, 6 Figs. available on request, FNAL-Pub-93/182-

    Galactic periodicity and the oscillating G model

    Get PDF
    We consider the model involving the oscillation of the effective gravitational constant that has been put forward in an attempt to reconcile the observed periodicity in the galaxy number distribution with the standard cosmological models. This model involves a highly nonlinear dynamics which we analyze numerically. We carry out a detailed study of the bound that nucleosynthesis imposes on this model. The analysis shows that for any assumed value for Ω\Omega (the total energy density) one can fix the value of Ωbar\Omega_{\rm bar} (the baryonic energy density) in such a way as to accommodate the observational constraints coming from the 4He^4{\rm He} primordial abundance. In particular, if we impose the inflationary value Ω=1\Omega=1 the resulting baryonic energy density turns out to be Ωbar0.021\Omega_{\rm bar}\sim 0.021. This result lies in the very narrow range 0.016Ωbar0.0260.016 \leq \Omega_{\rm bar} \leq 0.026 allowed by the observed values of the primordial abundances of the other light elements. The remaining fraction of Ω\Omega corresponds to dark matter represented by a scalar field.Comment: Latex file 29 pages with no figures. Please contact M.Salgado for figures. A more careful study of the model appears in gr-qc/960603
    corecore