246 research outputs found
Interference fit effect on holed single plates loaded with tension-tension stresses
This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates. The effect was investigated both experimentally and numerically. Axial fatigue tests have been carried out on holed specimens made of high performance steel (1075MPa of Ultimate strength and 990MPa of Yield strength) with or without a pin, made of the same material, press fitted into their central hole. Three different conditions have been investigated: free hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress-life (S–N) curves pointed out an increased fatigue life of the interference fit specimens compared with the free hole ones. The numericalinvestigation was performed in order to analyse the stress fields by applying an elastic plastic 2D simulation witha commercial Finite Element software. The stress history and distribution along the contact interference of the fitted samples indicates a significant reduction of the local stress range due to the externally applied loading (remote stress) since a residual and compressive stress field is generated by the pin insertion
Characterization of anisotropic nano-particles by using depolarized dynamic light scattering in the near field
Light scattering techniques are widely used in many fields of condensed and
sof t matter physics. Usually these methods are based on the study of the
scattered light in the far field. Recently, a new family of near field
detection schemes has been developed, mainly for the study of small angle light
scattering. These techniques are based on the detection of the light intensity
near to the sample, where light scattered at different directions overlaps but
can be distinguished by Fourier transform analysis. Here we report for the
first time data obtained with a dynamic near field scattering instrument,
measuring both polarized and depolarized scattered light. Advantages of this
procedure over the traditional far field detection include the immunity to
stray light problems and the possibility to obtain a large number of
statistical samples for many different wave vectors in a single instantaneous
measurement. By using the proposed technique we have measured the translational
and rotational diffusion coefficients of rod-like colloidal particles. The
obtained data are in very good agreement with the data acquired with a
traditional light scattering apparatus.Comment: Published in Optics Express. This version has changes in bibliograph
Interference fit effect on holed single plates loaded with tension-tension stresses
This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates. The effect was investigated both experimentally and numerically. Axial fatigue tests have been carried out on holed specimens made of high performance steel (1075MPa of Ultimate strength and 990MPa of Yield strength) with or without a pin, made of the same material, press fitted into their central hole. Three different conditions have been investigated: free hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress-life (S–N) curves pointed out an increased fatigue life of the interference fit specimens compared with the free hole ones. The numerical investigation was performed in order to analyse the stress fields by applying an elastic plastic 2D simulation with a commercial Finite Element software. The stress history and distribution along the contact interference of the fitted samples indicates a significant reduction of the local stress range due to the externally applied loading (remote stress) since a residual and compressive stress field is generated by the pin insertion
Nanoparticle characterization by using Tilted Laser Microscopy: back scattering measurement in near field
By using scattering in near field techniques, a microscope can be easily
turned into a device measuring static and dynamic light scattering, very useful
for the characterization of nanoparticle dispersions. Up to now, microscopy
based techniques have been limited to forward scattering, up to a maximum of 30
degrees. In this paper we present a novel optical scheme that overcomes this
limitation, extending the detection range to angles larger than 90 degrees
(back-scattering). Our optical scheme is based on a microscope, a wide
numerical aperture objective, and a laser illumination, with the collimated
beam positioned at a large angle with respect to the optical axis of the
objective (Tilted Laser Microscopy, TLM). We present here an extension of the
theory for near field scattering, which usually applies only to paraxial
scattering, to our strongly out-of-axis s ituation. We tested our instrument
and our calculations with calibrated spherical nanoparticles of several
different diameters, performing static and dynamic scattering measurements up
to 110 degrees. The measured static spectra and decay times are compatible with
the Mie theory and the diffusion coefficients provided by the Stokes-Einstein
equation. The ability of performing backscattering measurements with this
modified microscope opens the way to new applications of scattering in near
field techniques to the measurement of systems with strongly angle dependent
scattering.Comment: 18 pages, 10 figures. Accepted for publication in Optics Express,
vol. 17, no. 17 (08/17/2009
Effect of different underhead shot-peening and lubrication conditions on high-strength screws undergoing multiple tightenings
This study investigates the effect of shot-peening on the bearing friction coefficient of 42CrMoV grade 14.9 screws. An experimental campaign was conducted on a tribological testing rig, investigating the combined effects of shot peening treatments, lubrication conditions, and number of tightenings on the frictional coefficient. A first set of tests was performed, considering the same shot-peening conditions as in a previous study to highlight the role of different material. A second campaign was carried out, adjusting the process parameters to enhance the tribological response. Small shots and high-impact energy are suitable for tightening with lubricant, whereas, in dry conditions, larger shots and lower-impact energy lead to particularly low friction coefficients that are well aligned to those achievable when using lubricants
Effects of infill temperature on the tensile properties and warping of 3D-printed polylactic acid
Although extensive research has been carried out on the effects of temperature on the properties of parts by fused filament fabrication, no study considered the opportunity to use different temperatures and cooling strategies for the contour and the infill region. The purpose of this investigation is to explore such an opportunity through an experimental campaign on polylactic acid. Specifically, the variations in tensile properties and warping occurring with different infill temperatures and cooling methods are documented. The results demonstrate that diversifying process parameters used for the contour and infill of the part allow for significant improvements in mechanical properties without affecting the distortion of the manufactured samples. This result can be achieved by either increasing the nozzle temperature or switching off the cooling fan during infilling
On the impact strength of adhesive bonded pin-and-collar joints
Nowadays, the adhesive technology is gaining relevance in industrial sectors where impact operating conditions are very common. At the same time, tests on cylindrical joints represent a well-established method for determining the static strength of structural adhesives. This work aims at assessing the impact properties of structural adhesives by means of cylindrical joints. The investigation involved two adhesive formulations (an epoxy resin and an anaerobic) and has been carried out under static, quasi-static and low-velocity impact conditions. The main outcomes of the work are: (i) the pin-collar specimen is well suited to analyzing the impact properties of adhesives; (ii) both adhesives showed a dependence of the strength and stiffness properties on the strain rate; (iii) the epoxy product showed a greater impact toughness than the anaerobic. In appendix, the authors report the tuning procedure of a CZM numerical model in a commercial FE package, based on the experimental results
Interference fit effect on holed single plates loaded with tension-tension stresses
This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates. The effect was investigated both experimentally and numerically. Axial fatigue tests have been carried out on holed specimens made of high performance steel (1075MPa of Ultimate strength and 990MPa of Yield strength) with or without a pin, made of the same material, press fitted into their central hole. Three different conditions have been investigated: free hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress-life (S–N) curves pointed out an increased fatigue life of the interference fit specimens compared with the free hole ones. The numericalinvestigation was performed in order to analyse the stress fields by applying an elastic plastic 2D simulation witha commercial Finite Element software. The stress history and distribution along the contact interference of the fitted samples indicates a significant reduction of the local stress range due to the externally applied loading (remote stress) since a residual and compressive stress field is generated by the pin insertion
Fatigue response of AlSi10Mg by laser powder bed fusion: influence of build orientation, heat, and surface treatments
The aim of this study is to analyze how the fatigue behavior of AlSi10Mg by laser powder bed fusion is affected by build orientation, heat, and surface treatments. A three-by-three factorial plan has been arranged for this purpose. Particularly, regarding the heat treatment, three levels were considered (as built, age hardening, and stress relief); whereas, for the surface treatment, three levels were investigated (micro-shot-peening, micro-shot-peening plus fine blasting, and machining and lapping following laser powder bed fusion). Regarding the build orientation, the specimens were manufactured using three different build orientations (0 degrees, 45 degrees, and 90 degrees). The obtained data have been statistically analyzed by a three-factor ANOVA-based method. The results, supported by fractographic and micrographic microscopy analyses, indicate that the age-hardening treatment yields the maximum benefits, whereas stress relief may even have a detrimental effect. As for surface treatments, a positive influence of shot-peening has been found
High cycle fatigue response of grain refined EUROFER97
The present paper has investigated the high cycle fatigue behavior of EUROFER97 steel submitted to a novel process consisting of cold rolling with reduction ratio of 80 % followed by a heat treatment at 650 °C for 1 h. This process had already proved to be highly effective under static loads leading to a significant improvement in yield stress. The fatigue tests have been performed with 0.2 load ratio at room temperature. Results indicate that the fatigue strength of the steel submitted to the novel treatment is comparable to that of the standard EUROFER97. Moreover, the fatigued samples underwent a microstructural evolution consisting of grain size increase and texture change due to the stress-driven instability of grain boundaries, especially LAGBs. The collapse of some boundaries involves partial annihilation and re-arrangement of dislocations, and grain coalescence. As a consequence of such microstructural change the material softens with hardness variations up to 8 %
- …
