265 research outputs found
Selecting between two transition states by which water oxidation intermediates on an oxide surface decay
While catalytic mechanisms on electrode surfaces have been proposed for
decades, the pathways by which the product's chemical bonds evolve from the
initial charge-trapping intermediates have not been resolved in time. Here, we
discover a reactive population of charge-trapping intermediates with states in
the middle of a semiconductor's band-gap to reveal the dynamics of two parallel
transition state pathways for their decay. Upon photo-triggering the water
oxidation reaction from the n-SrTiO3 surface with band-gap, pulsed excitation,
the intermediates' microsecond decay reflects transition state theory (TST)
through: (1) two distinct and reaction dependent (pH, T, Ionic Strength, and
H/D exchange) time constants, (2) a primary kinetic salt effect on each
activation barrier and an H/D kinetic isotope effect on one, and (3) realistic
activation barrier heights (0.4 - 0.5 eV) and TST pre-factors (10^11 - 10^12
Hz). A photoluminescence from midgap states in n-SrTiO3 reveals the reaction
dependent decay; the same spectrum was previously assigned by us to
hole-trapping at parallel Ti-O(dot)-Ti (bridge) and perpendicular Ti-O(dot)
(oxyl) O-sites using in situ ultrafast vibrational and optical spectroscopy.
Therefore, the two transition states are naturally associated with the decay of
these respective intermediates. Furthermore, we show that reaction conditions
select between the two pathways, one of which reflects a labile intermediate
facing the electrolyte (the oxyl) and the other a lattice oxygen (the bridge).
Altogether, we experimentally isolate an important activation barrier for water
oxidation, which is necessary for designing water oxidation catalysts with high
O2 turn over. Moreover, in isolating it, we identify competing mechanisms for
O2 evolution at surfaces and show how to use reaction conditions to select
between them
Decomposition-aggregation stability analysis
This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab
DC-to-DC switching converter
A dc-to-dc converter having nonpulsating input and output current uses two inductances, one in series with the input source, the other in series with the output load. An electrical energy transferring device with storage, namely storage capacitance, is used with suitable switching means between the inductances to DC level conversion. For isolation between the source and load, the capacitance may be divided into two capacitors coupled by a transformer, and for reducing ripple, the inductances may be coupled. With proper design of the coupling between the inductances, the current ripple can be reduced to zero at either the input or the output, or the reduction achievable in that way may be divided between the input and output
A general unified approach to modelling switching-converter power stages
A method for modelling switching-converter power stages is developed, whose starting point is the unified state-space representation of the switched networks and whose end result is either a complete state-space description or its equivalent small-signal low-frequency linear circuit model. A new canonical circuit model is proposed, whose fixed topology contains all the essential input-output and control properties of any dc-to-dc switching converter, regardless of its detailed configuration, and by which different converters can be characterized in the form of a table conveniently stored in a computer data bank to provide a useful tool for computer aided design and optimization. The new canonical circuit model predicts that, in general, switching action introduces both zeros and poles into the duty ratio to output transfer function in addition to those from the effective filter network
Signatures of pressure induced superconductivity in insulating Bi2212
We have performed several high pressure electrical resistance experiments on
Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212
family of copper oxide superconductors. We find a resistive anomaly, a downturn
at low temperature, that onsets with applied pressure in the 20-40 kbar range.
Through both resistance and magnetoresistance measurements, we identify this
anomaly as a signature of induced superconductivity. Resistance to higher
pressures decreases Tc, giving a maximum of 10 K. The higher pressure
measurements exhibit a strong sensitivity to the hydrostaticity of the pressure
environment. We make comparisons to the pressure induced superconductivity now
ubiquitous in the iron arsenides.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Momentum average approximation for models with electron-phonon coupling dependent on the phonon momentum
We generalize the momentum average (MA) approximation to study the properties
of models with momentum-dependent electron-phonon coupling. As in the case of
the application of the original MA to the Holstein model, the results are
analytical, numerically trivial to evaluate, exact for both zero bandwidth and
for zero electron-phonon coupling, and are accurate everywhere in parameter
space. Comparison with available numerical data confirms this accuracy. We then
show that further improvements can be obtained based on variational
considerations, using the one-dimensional breathing-mode Hamiltonian as a
specific example. For example, by using this variational MA, we obtain ground
state energies within at most 0.3% error of the numerical data.Comment: 15 pages, 10 figure
Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission
In high-temperature superconductivity, the process that leads to the
formation of Cooper pairs, the fundamental charge carriers in any
superconductor, remains mysterious. We use a femtosecond laser pump pulse to
perturb superconducting Bi2Sr2CaCu2O8+{\delta}, and study subsequent dynamics
using time- and angle-resolved photoemission and infrared reflectivity probes.
Gap and quasiparticle population dynamics reveal marked dependencies on both
excitation density and crystal momentum. Close to the d-wave nodes, the
superconducting gap is sensitive to the pump intensity and Cooper pairs
recombine slowly. Far from the nodes pumping affects the gap only weakly and
recombination processes are faster. These results demonstrate a new window into
the dynamical processes that govern quasiparticle recombination and gap
formation in cuprates.Comment: 22 pages, 9 figure
Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor
A recent highlight in the study of high-Tc superconductors is the observation
of band renormalization / self-energy effects on the quasiparticles. This is
seen in the form of kinks in the quasiparticle dispersions as measured by
photoemission and interpreted as signatures of collective bosonic modes
coupling to the electrons. Here we compare for the first time the self-energies
in an optimally doped and strongly overdoped, non-superconducting single-layer
Bi-cuprate (Bi2Sr2CuO6). Besides the appearance of a strong overall weakening,
we also find that weight of the self-energy in the overdoped system shifts to
higher energies. We present evidence that this is related to a change in the
coupling to c-axis phonons due to the rapid change of the c-axis screening in
this doping range.Comment: 4 pages, 3 figure
- …
