643 research outputs found

    Exponential suppression of thermal conductance using coherent transport and heterostructures

    Full text link
    We consider coherent thermal conductance through multilayer photonic crystal heterostructures, consisting of a series of cascaded non-identical photonic crystals. We show that thermal conductance can be suppressed exponentially with the number of cascaded crystals, due to the mismatch between photonic bands of all crystals in the heterostructure.Comment: 15 pages, 4 figure

    Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    Get PDF
    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures

    Heat Transfer in High Temperature Multilayer Insulation

    Get PDF
    High temperature multilayer insulations have been investigated as an effective component of thermal-protection systems for atmospheric re-entry of reusable launch vehicles. Heat transfer in multilayer insulations consisting of thin, gold-coated, ceramic reflective foils and Saffil(TradeMark) fibrous insulation spacers was studied both numerically and experimentally. A finite volume numerical thermal model using combined conduction (gaseous and solid) and radiation in porous media was developed. A two-flux model with anisotropic scattering was used for radiation heat transfer in the fibrous insulation spacers between the reflective foils. The thermal model was validated by comparison with effective thermal conductivity measurements in an apparatus based on ASTM standard C201. Measurements were performed at environmental pressures in the range from 1x10(exp -4) to 760 torr over the temperature range from 300 to 1300 K. Four multilayer samples with nominal densities of 48 kg/cu m were tested. The first sample was 13.3 mm thick and had four evenly spaced reflective foils. The other three samples were 26.6 mm thick and utilized either one, two, or four reflective foils, located near the hot boundary with nominal foil spacing of 1.7 mm. The validated thermal model was then used to study relevant design parameters, such as reflective foil spacing and location in the stack-up and coating of one or both sides of foils

    Ultrafiltration for acute decompensated cardiac failure: A systematic review and meta-analysis

    Get PDF
    Background Ultrafiltration is a method used to achieve diuresis in acute decompensated heart failure (ADHF) when there is diuretic resistance, but its efficacy in other settings is unclear. We therefore conducted a systematic review and meta-analysis to evaluate the use of ultrafiltration in ADHF. Methods We searched MEDLINE and EMBASE for studies that evaluated outcomes following filtration compared to diuretic therapy in ADHF. The outcomes of interest were body weight change, change in renal function, length of stay, frequency of rehospitalization, mortality and dependence on dialysis. We performed random effects meta-analyses to pool studies that evaluated the desired outcomes and assessed statistical heterogeneity using the I2 statistic. Results A total of 10 trials with 857 participants (mean age 68 years, 71% male) compared filtration to usual diuretic care in ADHF. Nine studies evaluated weight change following filtration and the pooled results suggest a decline in mean body weight − 1.8; 95% CI, − 4.68 to 0.97 kg. Pooled results showed no difference between the filtration and diuretic group in change in creatinine or estimated glomerular filtration rate. The pooled results suggest longer hospital stay with filtration (mean difference, 3.70; 95% CI, − 3.39 to 10.80 days) and a reduction in heart failure hospitalization (RR, 0.71; 95% CI, 0.51–1.00) and all-cause rehospitalization (RR, 0.89; 95% CI, 0.43–1.86) compared to the diuretic group. Filtration was associated with a non-significant greater risk of death compared to diuretic use (RR, 1.08; 95% CI, 0.77–1.52)

    Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Get PDF
    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals

    The metabolism of anabolic-androgenic steroids in the greyhound

    No full text
    BACKGROUND Effective control of the use of anabolic-androgenic steroids (AASs) in animal sports is essential in order to ensure both animal welfare and integrity. In order to better police their use in Australian and New Zealand greyhound racing, thorough metabolic studies have been carried out on a range of registered human and veterinary AASs available in the region. RESULTS Canine metabolic data are presented for the AASs boldenone, danazol, ethylestrenol, mesterolone, methandriol, nandrolone and norethandrolone. The principal Phase I metabolic processes observed were the reduction of A-ring unsaturations and/or 3-ketones with either 3α,5β- or 3β,5α-stereochemistry, the oxidation of secondary 17β-hydroxyl groups and 16α-hydroxylation. The Phase II β-glucuronylation of sterol metabolites was extensive. CONCLUSION The presented data have enabled the effective analysis of AASs and their metabolites in competition greyhound urine samples.Australian Research Council LP077483
    corecore