557 research outputs found
Tuning Heavy Fermion Systems into Quantum Criticality by Magnetic Field
We discuss a series of thermodynamic, magnetic and electrical transport
experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which
magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL)
into a field-induced FL state. Upon approaching the quantum-critical points
from the FL side by reducing B we analyze the heavy quasiparticle (QP) mass and
QP-QP scattering cross sections. For CeNi2Ge2 the observed behavior agrees well
with the predictions of the spin-density wave (SDW) scenario for
three-dimensional (3D) critical spin-fluctuations. By contrast, the observed
singularity in YbRh2Si2 cannot be explained by the itinerant SDW theory for
neither 3D nor 2D critical spinfluctuations. Furthermore, we investigate the
magnetization M(B) at high magnetic fields. For CeNi2Ge2 a metamagnetic
transition is observed at 43 T, whereas for YbRh2Si2 a kink-like anomaly occurs
at 10 T in M vs B (applied along the easy basal plane) above which the heavy
fermion state is completely suppressed.Comment: 15 pages, 8 figures, submitted to Journal of Low Temperature Physics,
special Series on "High Magnetic Field Facilities
Physics of Polymorphic Transitions in CeRuSn
We report a detailed study of the polymorphic transitions in ternary stannide
CeRuSn on high quality single crystals through a combination of X-ray
diffraction experiments conducted at 300, 275 and 120 K, and measurements of
the thermal expansion, magnetization, and resistivity, along main
crystallographic axes. In addition, the transition was followed as a function
of pressure up to 0.8 GPa. The present X-ray diffraction data show that the
room temperature polymorph consists of the lattice doubled along the c axis
with respect to the CeCoAl-type structure consistent with previous reports.
Upon cooling, the compound undergoes two successive transitions, first to a
quintuple (290 K) and than to a triple CeCoAl superstructure at 225 K. The
transitions are accompanied by a tremendous volume change due to a strong
shrinking of the lattice along the c axis, which is clearly observed in thermal
expansion. We advance arguments that the volume collapse originates from an
increasing number of crystallographically inequivalent Ce sites and the change
of ratio between the short and long Ce-Ru bonds. The observed properties of the
polymorphic transition in CeRuSn are reminiscent of the transition in
elementary Cerium, suggesting that similar physics, i.e., a Kondo influenced
transition and strong lattice vibrations might be the driving forces
Scaling approach to itinerant quantum critical points
Based on phase space arguments, we develop a simple approach to metallic
quantum critical points, designed to study the problem without integrating the
fermions out of the partition function. The method is applied to the
spin-fermion model of a T=0 ferromagnetic transition. Stability criteria for
the conduction and the spin fluids are derived by scaling at the tree level. We
conclude that anomalous exponents may be generated for the fermion self-energy
and the spin-spin correlation functions below , in spite of the spin fluid
being above its upper critical dimension.Comment: 3 pages, 2 figures; discussion of the phase space restriction
modified and, for illustrative purposes, restricted to the tree-level
analysis of the ferromagnetic transitio
Dissymmetrical tunnelling in heavy fermion metals
A tunnelling conductivity between a heavy fermion metal and a simple metallic
point is considered. We show that at low temperatures this conductivity can be
noticeably dissymmetrical with respect to the change of voltage bias. The
dissymmetry can be observed in experiments on the heavy fermion metals whose
electronic system has undergone the fermion condensation quantum phase
transition.Comment: 7 pages, Revte
Non Fermi Liquid behavior in the under-screened Kondo model
Using the Schwinger boson spin representation, we reveal a new aspect to the
physics of a partially screened magnetic moment in a metal, as described by the
spin Kondo model. We show that the residual ferromagnetic interaction
between a partially screened spin and the electron sea destabilizes the Landau
Fermi liquid, forming a singular Fermi liquid with a divergence in the low temperature specific heat coefficient
. A magnetic field tunes this system back into Landau Fermi liquid
with a Fermi temperature proportional to . We discuss a
possible link with field-tuned quantum criticality in heavy electron materials.Comment: References corrected. Minor changes to tex
Universal Behavior of Heavy-Fermion Metals Near a Quantum Critical Point
The behavior of the electronic system of heavy fermion metals is considered.
We show that there exist at least two main types of the behavior when the
system is nearby a quantum critical point which can be identified as the
fermion condensation quantum phase transition (FCQPT). We show that the first
type is represented by the behavior of a highly correlated Fermi-liquid, while
the second type is depicted by the behavior of a strongly correlated
Fermi-liquid. If the system approaches FCQPT from the disordered phase, it can
be viewed as a highly correlated Fermi-liquid which at low temperatures
exhibits the behavior of Landau Fermi liquid (LFL). At higher temperatures ,
it demonstrates the non-Fermi liquid (NFL) behavior which can be converted into
the LFL behavior by the application of magnetic fields . If the system has
undergone FCQPT, it can be considered as a strongly correlated Fermi-liquid
which demonstrates the NFL behavior even at low temperatures. It can be turned
into LFL by applying magnetic fields . We show that the effective mass
diverges at the very point that the N\'eel temperature goes to zero. The
phase diagrams of both liquids are studied. We demonstrate that these
phase diagrams have a strong impact on the main properties of heavy-fermion
metals such as the magnetoresistance, resistivity, specific heat,
magnetization, volume thermal expansion, etc.Comment: Revtex, 11 pages, revised and accepted by JETP Let
YbRh2Si2: Quantum tricritical behavior in itinerant electron systems
We propose that proximity of the first-order transition manifested by the
quantum tricritical point (QTCP) explains non-Fermi-liquid properties of
YbRh2Si2. Here, at the QTCP, a continuous phase transition changes into first
order at zero temperature. The non-Fermi-liquid behaviors of YbRh2Si2 are
puzzling in two aspects; diverging ferromagnetic susceptibility at the
antiferromagnetic transition and unconventional power-law dependence in
thermodynamic quantities. These puzzles are solved by an unconventional
criticality derived from our spin fluctuation theory for the QTCP.Comment: 4 pages, 3 figure
Atomic Model of Susy Hubbard Operators
We apply the recently proposed susy Hubbard operators to an atomic model. In
the limiting case of free spins, we derive exact results for the entropy which
are compared with a mean field + gaussian corrections description. We show how
these results can be extended to the case of charge fluctuations and calculate
exact results for the partition function, free energy and heat capacity of an
atomic model for some simple examples. Wavefunctions of possible states are
listed. We compare the accuracy of large N expansions of the susy spin
operators with those obtained using `Schwinger bosons' and `Abrikosov
pseudo-fermions'. For the atomic model, we compare results of slave boson,
slave fermion, and susy Hubbard operator approximations in the physically
interesting but uncontrolled limiting case of N->2. For a mixed representation
of spins we estimate the accuracy of large N expansions of the atomic model. In
the single box limit, we find that the lowest energy saddle-point solution
reduces to simply either slave bosons or slave fermions, while for higher boxes
this is not the case. The highest energy saddle-point solution has the
interesting feature that it admits a small region of a mixed representation,
which bears a superficial resemblance to that seen experimentally close to an
antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision
Divergence of the Grueneisen Ratio at Quantum Critical Points in Heavy Fermion Metals
We present low-temperature volume thermal expansion, , and specific
heat, , measurements on high-quality single crystals of CeNi2Ge2 and
YbRh2(SiGe) which are located very near to quantum
critical points. For both systems, shows a more singular temperature
dependence than , and thus the Grueneisen ratio
diverges as T --> 0. For CeNi2Ge2, our results are in accordance with the
spin-density wave (SDW) scenario for three-dimensional critical
spin-fluctuations. By contrast, the observed singularity in
YbRh2_{0.95}_{0.05}_2$ cannot be explained by the itinerant SDW
theory but is qualitatively consistent with a locally quantum critical picture.Comment: 11 pages, 4 figure
Long range order and two-fluid behavior in heavy electron materials
The heavy electron Kondo liquid is an emergent state of condensed matter that
displays universal behavior independent of material details. Properties of the
heavy electron liquid are best probed by NMR Knight shift measurements, which
provide a direct measure of the behavior of the heavy electron liquid that
emerges below the Kondo lattice coherence temperature as the lattice of local
moments hybridizes with the background conduction electrons. Because the
transfer of spectral weight between the localized and itinerant electronic
degrees of freedom is gradual, the Kondo liquid typically coexists with the
local moment component until the material orders at low temperatures. The
two-fluid formula captures this behavior in a broad range of materials in the
paramagnetic state. In order to investigate two-fluid behavior and the onset
and physical origin of different long range ordered ground states in heavy
electron materials, we have extended Knight shift measurements to
URuSi, CeIrIn and CeRhIn. In CeRhIn we find that the
antiferromagnetic order is preceded by a relocalization of the Kondo liquid,
providing independent evidence for a local moment origin of antiferromagnetism.
In URuSi the hidden order is shown to emerge directly from the Kondo
liquid and so is not associated with local moment physics. Our results imply
that the nature of the ground state is strongly coupled with the hybridization
in the Kondo lattice in agreement with phase diagram proposed by Yang and
Pines.Comment: 9 pages, 13 figure
- …
