43 research outputs found
Report on Experience with the Project "Study of the Regulation of Axonal Excitability in Peripheral Sensory and Motor Axons by Means of the Threshold Tracking Methods"
Muscular cramp: causes and management
© 2018 EANMuscular cramp is a common symptom in healthy people, especially among the elderly and in young people after vigorous or peak exercise. It is prominent in a number of benign neurological syndromes. It is a particular feature of chronic neurogenic disorders, especially amyotrophic lateral sclerosis. A literature review was undertaken to understand the diverse clinical associations of cramp and its neurophysiological basis, taking into account recent developments in membrane physiology and modulation of motor neuronal excitability. Many aspects of cramping remain incompletely understood and require further study. Current treatment options are correspondingly limited.info:eu-repo/semantics/publishedVersio
S18: Changes in neuromuscular axonal excitability in benign cramps-fasciculation syndrome
Dual effect of ATP in the olfactory epithelium of Xenopus laevis tadpoles: Activation of both receptor and sustentacular supporting cells
Low frequency voltage clamp: recording of voltage transients at constant average command voltage
We implemented a simple feedback system that modifies the conventional current clamp mode of a patch clamp amplifier so that transient potentials, such as action potentials and synaptic potentials, can be measured as in the usual current clamp, while the average membrane potential is kept constant at a value chosen by the user. The circuit thus works like the current clamp for high frequency signals and like a voltage clamp for low frequency signals. We delineate its transfer properties and give application examples. (C) 2000 Elsevier Science B.V. All rights reserved
ATP activates both receptor and sustentacular supporting cells in the olfactory epithelium of Xenopus laevis tadpoles
Nucleotides and amino acids are acknowledged categories of water-borne olfactory stimuli. In previous studies it has been shown that larvae of Xenopus laevis are able to sense amino acids. Here we report on the effect of ATP in the olfactory epithelium (OE) of Xenopus laevis tadpoles. First, ATP activates a subpopulation of cells in the OE. The ATP-sensitive subset of cells is almost perfectly disjoint from the subset of amino acid-activated cells. Both responses are not mediated by the well-described cAMP transduction pathway as the two subpopulations of cells do not overlap with a third, forskolin-activated subpopulation. We further show that, in contrast to amino acids, which act exclusively as olfactory stimuli, ATP appears to feature a second role. Surprisingly it activated a large number of sustentacular supporting cells (SCs) and, to a much lower extent, olfactory receptor neurons. The cells of the amino acid- and ATP-responding subsets featured differences in shape, size and position in the OE. The latencies to activation upon stimulus application differed markedly in these subsets. To obtain these results two technical points were important. We used a novel dextran-tetramethylrhodamine-backfilled slice preparation of the OE and we found out that an antibody to calnexin, a known molecular chaperone, also labels SCs. Our findings thus show a strong effect of ATP in the OE and we discuss some of the possible physiological functions of nucleotides in the OE
Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevis tadpoles.
Norepinephrine (NE) has various modulatory roles in both the peripheral and the central nervous systems. Here we investigate the function of the locus coeruleus efferent fibres in the olfactory bulb of Xenopus laevis tadpoles. In order to distinguish unambiguously between mitral cells and granule cells of the main olfactory bulb and the accessory olfactory bulb, we used a slice preparation. The two neuron types were distinguished on the basis of their location in the slice, their typical branching pattern and by electrophysiological criteria. At NE concentrations lower than 5 microM there was only one effect of NE upon voltage-gated conductances; NE blocked a high-voltage-activated Ca(2+)-current in mitral cells of both the main and the accessory olfactory bulbs. No such effect was observed in granule cells. The effect of NE upon mitral cell Ca(2+)-currents was mimicked by the alpha(2)-receptor agonists clonidine and alpha-methyl-NE. As a second effect, NE or clonidine blocked spontaneous synaptic activity in granule cells of both the main and the accessory olfactory bulbs. NE or clonidine also blocked the spontaneous synaptic activity in mitral cells of either olfactory bulb. The amplitude of glutamate-induced currents in granule cells was modulated neither by clonidine nor by alpha-methyl-NE. Taken together, the main effect of the noradrenergic, presynaptic, alpha(2)-receptor-mediated block of Ca(2)+-currents in mitral cells appeared to be a wide-spread disinhibition of mitral cells in the accessory olfactory bulb as well as in the main olfactory bulb
Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevis tadpoles.
Norepinephrine (NE) has various modulatory roles in both the peripheral and the central nervous systems. Here we investigate the function of the locus coeruleus efferent fibres in the olfactory bulb of Xenopus laevis tadpoles. In order to distinguish unambiguously between mitral cells and granule cells of the main olfactory bulb and the accessory olfactory bulb, we used a slice preparation. The two neuron types were distinguished on the basis of their location in the slice, their typical branching pattern and by electrophysiological criteria. At NE concentrations lower than 5 microM there was only one effect of NE upon voltage-gated conductances; NE blocked a high-voltage-activated Ca(2+)-current in mitral cells of both the main and the accessory olfactory bulbs. No such effect was observed in granule cells. The effect of NE upon mitral cell Ca(2+)-currents was mimicked by the alpha(2)-receptor agonists clonidine and alpha-methyl-NE. As a second effect, NE or clonidine blocked spontaneous synaptic activity in granule cells of both the main and the accessory olfactory bulbs. NE or clonidine also blocked the spontaneous synaptic activity in mitral cells of either olfactory bulb. The amplitude of glutamate-induced currents in granule cells was modulated neither by clonidine nor by alpha-methyl-NE. Taken together, the main effect of the noradrenergic, presynaptic, alpha(2)-receptor-mediated block of Ca(2)+-currents in mitral cells appeared to be a wide-spread disinhibition of mitral cells in the accessory olfactory bulb as well as in the main olfactory bulb
