2,184 research outputs found

    An optical lattice on an atom chip

    Full text link
    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retro-reflected using the atom chip surface as a high-quality mirror, generating a vertical array of purely optical oblate traps. We load thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime where the thermal energy is smaller than a quantum of transverse excitation. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice.Comment: 3 pages, 2 figure

    A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism

    Get PDF
    We present a two particle model to explain the mechanism that stabilizes a bunch of positively charged ions in an "ion trap resonator" [Pedersen etal, Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two ions into two mappings for the free motion in different parts of the trap and one for a compressing momentum kick. The ions' interaction is modelled by a time delay, which then changes the balance between adjacent momentum kicks. Through these mappings we identify the microscopic process that is responsible for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev

    Gravity-induced Wannier-Stark ladder in an optical lattice

    Full text link
    We discuss the dynamics of ultracold atoms in an optical potential accelerated by gravity. The positions and widths of the Wannier-Stark ladder of resonances are obtained as metastable states. The metastable Wannier-Bloch states oscillate in a single band with the Bloch period. The width of the resonance gives the rate transition to the continuum.Comment: 5 pages + 8 eps figures, submitted to Phys. Rev.

    Periodically-dressed Bose-Einstein condensates: a superfluid with an anisotropic and variable critical velocity

    Full text link
    Two intersecting laser beams can produce a spatially-periodic coupling between two components of an atomic gas and thereby modify the dispersion relation of the gas according to a dressed-state formalism. Properties of a Bose-Einstein condensate of such a gas are strongly affected by this modification. A Bogoliubov transformation is presented which accounts for interparticle interactions to obtain the quasiparticle excitation spectrum in such a condensate. The Landau critical velocity is found to be anisotropic and can be widely tuned by varying properties of the dressing laser beams.Comment: 5 pages, 4 figure

    Scaling property of the critical hopping parameters for the Bose-Hubbard model

    Full text link
    Recently precise results for the boundary between the Mott insulator phase and the superfluid phase of the homogeneous Bose-Hubbard model have become available for arbitrary integer filling factor g and any lattice dimension d > 1. We use these data for demonstrating that the critical hopping parameters obey a scaling relationship which allows one to map results for different g onto each other. Unexpectedly, the mean-field result captures the dependence of the exact critical parameters on the filling factor almost fully. We also present an approximation formula which describes the critical parameters for d > 1 and any g with high accuracy.Comment: 5 pages, 5 figures. to appear in EPJ

    Forecasting in the light of Big Data

    Get PDF
    Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on the first principles, and the naive inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann

    Quantum phase transition of condensed bosons in optical lattices

    Full text link
    In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid- Mott-insulator phase transition condition is determined by the energy-band structure with an obvious interpretation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy spectrum derived in terms of Bogliubov approach.Comment: 13 pages, 1 figure

    Resolved-sideband Raman cooling to the ground state of an optical lattice

    Full text link
    We trap neutral Cs atoms in a two-dimensional optical lattice and cool them close to the zero-point of motion by resolved-sideband Raman cooling. Sideband cooling occurs via transitions between the vibrational manifolds associated with a pair of magnetic sublevels and the required Raman coupling is provided by the lattice potential itself. We obtain mean vibrational excitations \bar{n}_x \approx \bar{n}_y \approx 0.01, corresponding to a population \sim 98% in the vibrational ground state. Atoms in the ground state of an optical lattice provide a new system in which to explore quantum state control and subrecoil laser coolingComment: PDF file, 13 pages including 3 figure

    A quantum point contact for neutral atoms

    Get PDF
    We show that the conductance of neutral atoms through a tightly confining waveguide constriction is quantized in units of lambda_dB^2/pi, where lambda_dB is the de Broglie wavelength of the incident atoms. Such a constriction forms the atom analogue of an electron quantum point contact and is an example of quantum transport of neutral atoms in an aperiodic system. We present a practical constriction geometry that can be realized using a microfabricated magnetic waveguide, and discuss how a pair of such constrictions can be used to study the quantum statistics of weakly interacting gases in small traps.Comment: 5 pages with 3 figures. To appear in Phys. Rev. Let

    Random Scattering by Atomic Density Fluctuations in Optical Lattices

    Get PDF
    We investigate hitherto unexplored regimes of probe scattering by atoms trapped in optical lattices: weak scattering by effectively random atomic density distributions and multiple scattering by arbitrary atomic distributions. Both regimes are predicted to exhibit a universal semicircular scattering lineshape for large density fluctuations, which depend on temperature and quantum statistics.Comment: 4 pages, 2 figure
    corecore