702 research outputs found
Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic
An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements
Radiation Hardness Studies in a CCD with High-Speed Column Parallel Readout
Charge Coupled Devices (CCDs) have been successfully used in several high
energy physics experiments over the past two decades. Their high spatial
resolution and thin sensitive layers make them an excellent tool for studying
short-lived particles. The Linear Collider Flavour Identification (LCFI)
collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex
detector of the International Linear Collider (ILC). The CPCCDs can be read out
many times faster than standard CCDs, significantly increasing their operating
speed. The results of detailed simulations of the charge transfer inefficiency
(CTI) of a prototype CPCCD are reported and studies of the influence of gate
voltage on the CTI described. The effects of bulk radiation damage on the CTI
of a CPCCD are studied by simulating the effects of two electron trap levels,
0.17 and 0.44 eV, at different concentrations and operating temperatures. The
dependence of the CTI on different occupancy levels (percentage of hit pixels)
and readout frequencies is also studied. The optimal operating temperature for
the CPCCD, where the effects of the charge trapping are at a minimum, is found
to be about 230 K for the range of readout speeds proposed for the ILC. The
results of the full simulation have been compared with a simple analytic model.Comment: 3 pages, 6 figures; presented at IEEE'07, ALCPG'07, ICATPP'0
Interpolated sequences and critical -values of modular forms
Recently, Zagier expressed an interpolated version of the Ap\'ery numbers for
in terms of a critical -value of a modular form of weight 4. We
extend this evaluation in two directions. We first prove that interpolations of
Zagier's six sporadic sequences are essentially critical -values of modular
forms of weight 3. We then establish an infinite family of evaluations between
interpolations of leading coefficients of Brown's cellular integrals and
critical -values of modular forms of odd weight.Comment: 23 pages, to appear in Proceedings for the KMPB conference: Elliptic
Integrals, Elliptic Functions and Modular Forms in Quantum Field Theor
On the K^+D Interaction at Low Energies
The Kd reactions are considered in the impulse approximation with NN
final-state interactions (NN FSI) taken into account. The realistic parameters
for the KN phase shifts are used. The "quasi-elastic" energy region, in which
the elementary KN interaction is predominantly elastic, is considered. The
theoretical predictions are compared with the data on the K^+d->K^+pn,
K^+d->K^0pp, K^+d->K^+d and K^+d total cross sections. The NN FSI effect in the
reaction K^+d->K^+pn has been found to be large. The predictions for the Kd
cross sections are also given for slow kaons, produced from phi(1020) decays,
as the functions of the isoscalar KN scattering length a_0. These predictions
can be used to extract the value of a_0 from the data.Comment: 22 pages, 5 figure
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
A Search for Jet Handedness in Hadronic Decays
We have searched for signatures of polarization in hadronic jets from decays using the ``jet handedness'' method. The polar angle
asymmetry induced by the high SLC electron-beam polarization was used to
separate quark jets from antiquark jets, expected to be left- and
right-polarized, respectively. We find no evidence for jet handedness in our
global sample or in a sample of light quark jets and we set upper limits at the
95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing
power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure
Performance of buried channel n-type MOSFETs in 0.18-μm CMOS image sensor process
Buried channel (BC) MOSFETs are known to have better noise performance than surface channel (SC) MOSFETs when used as source followers in modern Charge Coupled Devices (CCD). CMOS image sensors find increasing range of applications and compete with CCDs in high performance imaging, however BC transistors are rarely used in CMOS. As a part of the development of charge storage using BC CCDs in CMOS, we designed and manufactured deep depletion BC n-type MOSFETs in 0.18 μm CMOS image sensor process. The transistors are designed in a way similar to the source followers in a typical BC CCD. In this paper we report the results from their characterization and compare with enhancement mode and “zero-threshold” SC devices. In addition to the detailed current-voltage and noise measurements, semiconductor device simulation results are presented to illustrate and understand the different conditions affecting the channel conduction and the noise performance of the BC transistors at low operating voltages. We show that the biasing of the BC transistors has to be carefully adjusted for optimal operation, and that their noise performance at the right operating conditions can be superior to SC devices, despite their lower gain as in-pixel source followers
- …
