1,405 research outputs found

    Microwave-assisted cross-polarization of nuclear spin ensembles from optically-pumped nitrogen-vacancy centers in diamond

    Full text link
    The ability to optically initialize the electronic spin of the nitrogen-vacancy (NV) center in diamond has long been considered a valuable resource to enhance the polarization of neighboring nuclei, but efficient polarization transfer to spin species outside the diamond crystal has proven challenging. Here we demonstrate variable-magnetic-field, microwave-enabled cross-polarization from the NV electronic spin to protons in a model viscous fluid in contact with the diamond surface. Slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protocol suggest slower molecular diffusion near the diamond surface compared to that in bulk, an observation consistent with present models of the microscopic structure of a fluid close to a solid interface.Comment: 7 pages, 4 figure

    Prediction of Mechanical Properties of Graphene Oxide Reinforced Aluminum Composites

    Get PDF
    Estimating the effect of graphene oxide (GO) reinforcement on overall properties of aluminum (Al) matrix composites experimentally is time-consuming and involves high manufacturing costs and sophisticated characterizations. An attempt was made in this paper to predict the mechanical properties of GO/Al composites by using a micromechanical finite element approach. The materials used for prediction included monolayer and multilayer GO layers distributed uniformly on the spherical Al matrix particles. The estimation was done by assuming that a representative volumetric element (RVE) represents the composite structure, and reinforcement and matrix were modeled as continuum. The load transfer between the GO reinforcement and Al was modeled using joint elements that connect the two materials. The numerical results from the finite element model were compared with Voigt model and experimental results from the GO/Al composites produced at optimized process parameters. A good agreement of numerical results with the theoretical models was noted. The load-bearing capacity of the Al matrix increased with the addition of GO layers, however, Young’s modulus of the GO/Al composites decreased with an increase in the number of layers from monolayer to 5 layers. The numerical results presented in this paper have demonstrated the applicability of the current approach for predicting the overall properties of composites

    Observation of sub-Poisson photon statistics in the cavity-QED microlaser

    Full text link
    We have measured the second-order correlation function of the cavity-QED microlaser output and observed a transition from photon bunching to antibunching with increasing average number of intracavity atoms. The observed correlation times and the transition from super- to sub-Poisson photon statistics can be well described by gain-loss feedback or enhanced/reduced restoring action against fluctuations in photon number in the context of a quantum microlaser theory and a photon rate equation picture. However, the theory predicts a degree of antibunching several times larger than that observed, which may indicate the inadequacy of its treatment of atomic velocity distributions.Comment: 4 pages, 4 figure

    Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable

    Full text link
    There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the optimizations and techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph-Based Benchmark Suite (GBBS).Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    An extensible framework for multicore response time analysis

    Get PDF
    In this paper, we introduce a multicore response time analysis (MRTA) framework, which decouples response time analysis from a reliance on context independent WCET values. Instead, the analysis formulates response times directly from the demands placed on different hardware resources. The MRTA framework is extensible to different multicore architectures, with a variety of arbitration policies for the common interconnects, and different types and arrangements of local memory. We instantiate the framework for single level local data and instruction memories (cache or scratchpads), for a variety of memory bus arbitration policies, including: Round-Robin, FIFO, Fixed-Priority, Processor-Priority, and TDMA, and account for DRAM refreshes. The MRTA framework provides a general approach to timing verification for multicore systems that is parametric in the hardware configuration and so can be used at the architectural design stage to compare the guaranteed levels of real-time performance that can be obtained with different hardware configurations. We use the framework in this way to evaluate the performance of multicore systems with a variety of different architectural components and policies. These results are then used to compose a predictable architecture, which is compared against a reference architecture designed for good average-case behaviour. This comparison shows that the predictable architecture has substantially better guaranteed real-time performance, with the precision of the analysis verified using cycle-accurate simulation

    EVALUATION OF MEDHOVIKAS, A HERBAL FORMULATION FOR ANTIDEPRESSANT ACTIVITY

    Get PDF
    Objective: The present study was conducted to evaluate the antidepressant activity of Medhovikas and its activity is compared with that of Imipramine and Mentat. The MAO-A and MAO-B levels were estimated by the Biochemical Method.Methods: There are several methods available to evaluate the antidepressant activity. In the present study the antidepressant activity is assessed using behavioural despair method such as Forced swim test (FST) in mice. Imipramine is used as a positive control in doses of 10mg/kg and 20mg/kg, Similar activity was also observed with Medhovikas in doses of 200 and 400mg/kg. Biochemical method in rats to estimate the levels of MAO-A and MAO-B, the biogenic amine 5-HT is oxidized by MAO to 5-hydrixy indole acetic acid (5-HIAA) as a major metabolite and is excreted in urine. Hence the reduction in the urinary 5-HIAA level from normal after treatment with the test compound was taken as a measure of it's MAO inhibitory action.Results : The antidepressant activity of 200 and 400mg/kg of Medhovikas was equivalent to that of 10 and 20mg/kg of imipramine respectively. It significantly reduced the duration of immobility indicating antidepressant activity. Significant decrease in brain MAO-A and MAO-B levels were observed which was determined by the Biochemical method.Conclusion: Antidepressant activity was probably shown by inhibiting MAO-A and MAO-B, There are several methods to detect the monoamine oxidaise inhibitor activity of substances. These methods are based on biochemical estimation of biogenic amines and /or their pharmacological responses. This shows that Medhovikas is a potential antidepressant and the probable mechanism of action is in interest for further investigation.Keywords: Antidepressant, Forced swim test, Imipramine,MAO-A & B, Medhovika and Menta
    corecore