23 research outputs found
Exactly solvable Wadati potentials in the PT-symmetric Gross-Pitaevskii equation
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of
the Wadati type: . We formulate a recipe for the construction of
Wadati potentials supporting exact localised solutions. The general procedure
is exemplified by equations with attractive and repulsive cubic nonlinearity
bearing a variety of bright and dark solitons.Comment: To appear in Proceedings of the 15 Conference on Pseudo-Hermitian
Hamiltonians in Quantum Physics, May 18-23 2015, Palermo, Italy (Springer
Proceedings in Physics, 2016
Dynamics of generalized PT-symmetric dimers with time-periodic gain–loss
A parity-time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrödinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by finding two constants of motion. Firstly, a generalized problem using Melnikov-type analysis and topological degree arguments is studied for showing the existence of periodic (libration), shift- periodic (rotation), and chaotic solutions. Then these general results are applied to the PT-symmetric dimer. It is interestingly shown that if a sufficient condition is satisfied, then rotation modes, which do not exist in the dimer with constant gain–loss, will persist. An approximate threshold for PT-broken phase corresponding to the disappearance of bounded solutions is also presented. Numerical study is presented accompanying the analytical results
