8 research outputs found

    Artificial Supramolecular Pumps Powered by Light

    No full text
    The development of artificial nanoscale motors that can use energy from a source to perform tasks requires systems capable of performing directionally controlled molecular movements and operating away from chemical equilibrium. Here we describe the design, synthesis and properties of pseudorotaxanes in which a photon input triggers the unidirectional motion of a macrocyclic ring with respect to a non-symmetric molecular axle. The photoinduced energy ratcheting at the basis of the pumping mechanism is validated by measuring the relevant thermodynamic and kinetic parameters. Owing to the photochemical behaviour of the azobenzene moiety embedded in the axle, the pump can repeat its operation cycle autonomously under continuous illumination. We use NMR spectroscopy to observe the dissipative non-equilibrium state generated in situ by light irradiation. We also show that fine changes in the axle structure lead to an improvement in the performance of the motor. Such results highlight the modularity and versatility of this minimalist pump design, which provides facile access to dynamic systems that operate under photoinduced non-equilibrium regimes

    Design and Synthesis of a Nano-winch

    No full text
    International audienceTechnical progress in the field of Scanning Probe Microscopy (SPM) has opened the way for the development of new surface-mounted artificial molecular machines, which can be addressed at the single molecule scale. In this context, a ruthenium-based molecular motor has been shown to undergo controlled unidirectional and reversible rotation when fueled with electrons delivered by the tip of a Scanning Tunneling Microscope. In this chapter, we report our efforts towards a deeper understanding of the mechanical properties of this molecular motor. In view of complementary force measurements to be performed at the single molecule scale using SPM techniques, the organometallic structure of the motor has been derivatized to append a long chain terminated by a hook. We detail here the design of this nano-winch architecture and the modular synthesis of a first prototype dedicated to Atomic Force Microscopy-based Single Molecule Force Spectroscopy experiments

    Towards artificial molecular factories from framework-embedded molecular machines

    No full text

    Radical-pairing-induced molecular assembly and motion

    No full text
    corecore