388 research outputs found

    Nucleation and Growth of GaN/AlN Quantum Dots

    Full text link
    We study the nucleation of GaN islands grown by plasma-assisted molecular-beam epitaxy on AlN(0001) in a Stranski-Krastanov mode. In particular, we assess the variation of their height and density as a function of GaN coverage. We show that the GaN growth passes four stages: initially, the growth is layer-by-layer; subsequently, two-dimensional precursor islands form, which transform into genuine three-dimensional islands. During the latter stage, island height and density increase with GaN coverage until the density saturates. During further GaN growth, the density remains constant and a bimodal height distribution appears. The variation of island height and density as a function of substrate temperature is discussed in the framework of an equilibrium model for Stranski-Krastanov growth.Comment: Submitted to PRB, 10 pages, 15 figure

    Growth and optical properties of GaN/AlN quantum wells

    Full text link
    We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range between 4.2 and 2.3 eV for well widths between 0.7 and 2.6 nm, respectively. An internal electric field strength of 9.2±1.09.2\pm 1.0 MV/cm is deduced from the dependence of the emission energy on the well width.Comment: Submitted to AP

    Probing exciton localization in non-polar GaN/AlN Quantum Dots by single dot optical spectroscopy

    Full text link
    We present an optical spectroscopy study of non-polar GaN/AlN quantum dots by time-resolved photoluminescence and by microphotoluminescence. Isolated quantum dots exhibit sharp emission lines, with linewidths in the 0.5-2 meV range due to spectral diffusion. Such linewidths are narrow enough to probe the inelastic coupling of acoustic phonons to confined carriers as a function of temperature. This study indicates that the carriers are laterally localized on a scale that is much smaller than the quantum dot size. This conclusion is further confirmed by the analysis of the decay time of the luminescence

    Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.

    Get PDF
    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005

    Incorporation of europium into gan nanowires by ion implantation

    Get PDF
    Rare earth (RE)-doped GaN nanowires (NWs), combining the well-defined and controllable optical emission lines of trivalent RE ions with the high crystalline quality, versatility, and small dimension of the NW host, are promising building blocks for future nanoscale devices in optoelectronics and quantum technologies. Europium doping of GaN NWs was performed by ion implantation, and structural and optical properties were assessed in comparison to thin film reference samples. Despite some surface degradation for high implantation fluences, the NW core remains of high crystalline quality with lower concentrations of extended defects than observed in ion-implanted thin films. Strain introduced by implantation defects is efficiently relaxed in NWs and the measured deformation stays much below that in thin films implanted in the same conditions. Optical activation is achieved for all samples after annealing, and while optical centers are similar in all samples, Eu^3+ emission from NW samples is shown to be less affected by residual implantation damage than for the case of thin films. The incorporation of Eu in GaN NWs was further investigated by nano-cathodoluminescence and X-ray absorption spectroscopy (XAS). Maps of the Eu-emission intensity within a single NW agree well with the Eu-distribution predicted by Monte Carlo simulations, suggesting that no pronounced Eu-diffusion takes place. XAS shows that 70-80% of Eu is found in the 3+ charge state while 20-30% is 2+ attributed to residual implantation defects. A similar local environment was found for Eu in NWs and thin films: for low fluences, Eu is mainly incorporated on substitutional Ga-sites, while for high fluences XAS points at the formation of a local EuN-like next neighbor structure. The results reveal the high potential of ion implantation as a processing tool at the nanoscale

    Field demonstration of a fully managed, L1 encrypted 3-node network with hybrid relayed-QKD and centralized symmetric classical key management

    Full text link
    We successfully demonstrated a fully-managed, field-deployed, three-node QKD ring network with L1-OTNsec encryption, that employs a hybrid scheme of QKD and classical yet quantum-safe centrally-generated symmetric keys to support point-to-point and relay consumers

    Particle-induced morphological modification of Al alloy equiaxed dendrites revealed by sub-second in situ microtomography

    Get PDF
    The study of dendritic growth is a challenging topic at the heart of intense research in material science. Understanding such processes is of prime importance as it helps predicting the final microstructure governing material properties. In the specific case of the design of metal-matrix nanocomposites (MMNCs), the addition of nano-sized particles inside the metallic melt increases the complexity as their influence on the growth morphology of dendrites is not yet fully understood. In the present experimental study, we use in situ X-ray tomography imaging with very high temporal resolution (0.35 s per 3D image) coupled with in situ ultrasonic melt homogenisation to record, in 3D and real time, the free growth at high cooling rates (~2 K.s-1) of equiaxed dendrites in an AA6082 alloy containing Y2O3 nanoparticles. The careful 3D analysis of the dendrite morphologies as well as their solidification dynamics reveals that in the case of well-dispersed particles, dendrite equiaxed growth occurs through complex hyper-branched morphologies. Such behaviour is believed to arise from particle-induced modification of the solidification processes at the origin of multiple splitting, branching and curving mechanisms of the dendrite arms. These results shed light on long-standing empirical and modelling statements and open new ways for direct investigation of equiaxed growth in metallic alloys and composites.European Commission in the 7th Framework Program (contract FP7-NMP3-LA-2012-280421) ExoMet Project by the European Space Agency and by the individual partner organizations; ESRF-MA1876 long term project
    corecore