8,248 research outputs found

    Finite Temperature Effective Potential for Gauge Models in de Sitter Space

    Get PDF
    The one-loop effective potential for gauge models in static de Sitter space at finite temperatures is computed by means of the ζ\zeta--function method. We found a simple relation which links the effective potentials of gauge and scalar fields at all temperatures. In the de Sitter invariant and zero-temperature states the potential for the scalar electrodynamics is explicitly obtained, and its properties in these two vacua are compared. In this theory the two states are shown to behave similarly in the regimes of very large and very small radii a of the background space. For the gauge symmetry broken in the flat limit (aa \to \infty) there is a critical value of a for which the symmetry is restored in both quantum states. Moreover, the phase transitions which occur at large or at small a are of the first or of the second order, respectively, regardless the vacuum considered. The analytical and numerical analysis of the critical parameters of the above theory is performed. We also established a class of models for which the kind of phase transition occurring depends on the choice of the vacuum.Comment: 23 pages, LaTeX, 5 figure.ep

    Atrial natriuretic peptide effects on intracellular pH changes and ROS production in HEPG2 cells: Role of p38 MAPK and phospholipase D

    Get PDF
    Aims: The present study was performed to evaluate Atrial Natriuretic Peptide ( ANP) effects on intracellular pH, phospholipase D and ROS production and the possible relationship among them in HepG2 cells. Cancer extracellular microenvironment is more acidic than normal tissues and the activation of NHE- 1, the only system able to regulate pHi homeostasis in this condition, can represent an important event in cell proliferation and malignant transformation. Methods: The ANP effects on pHi were evaluated by fluorescence spectrometry. The effects on p38 MAPK and ROS production were evaluated by immunoblots and analysis of DCF- DA fluorescence, respectively. RT- PCR analysis and Western blotting were used to determine the ANP effect on mRNA NHE- 1 expression and protein levels. PLD- catalyzed conversion of phosphatidylcholine to phosphatydilethanol ( PetOH), in the presence of ethanol, was monitored by thin layer chromatography. Results: A significant pHi decrease was observed in ANP- treated HepG2 cells and this effect was paralleled by the enhancement of PLD activity and ROS production. The ANP effect on pHi was coupled to an increased p38 MAPK phosphorylation and a down- regulation of mRNA NHE- 1 expression and protein levels. Moreover, the relationship between PLD and ROS production was demonstrated by calphostin- c, a potent inhibitor of PLD. At the same time, all assessed ANP- effects were mediated by NPR- C receptors. Conclusion: Our results indicate that ANP recruits a signal pathway associated with p38 MAPK, NHE- 1 and PLD responsible for ROS production, suggesting a possible role for ANP as novel modulator of ROS generation in HepG2 cells. Copyright (C) 2005 S. Karger AG, Basel

    Thermal Fields, Entropy, and Black Holes

    Get PDF
    In this review we describe statistical mechanics of quantum systems in the presence of a Killing horizon and compare statistical-mechanical and one-loop contributions to black hole entropy. Studying these questions was motivated by attempts to explain the entropy of black holes as a statistical-mechanical entropy of quantum fields propagating near the black hole horizon. We provide an introduction to this field of research and review its results. In particular, we discuss the relation between the statistical-mechanical entropy of quantum fields and the Bekenstein-Hawking entropy in the standard scheme with renormalization of gravitational coupling constants and in the theories of induced gravity.Comment: 44 pages, LaTeX fil

    Avaliação da espectroscopia de infravermelho próximo (NIR) para determinação da concentração de nitrogênio total em amostras de grãos de soja.

    Get PDF
    A determinação da concentração de nitrogênio (N) pelo método Kjeldhal é considerada padrão para determinação de N total. Entretanto, este método gera alta quantidade de resíduos, é moroso e passível de erros durante a destilação e a titulação. Por outro lado, a determinação indireta do teor de proteína nos grãos de soja, por meio da espectroscopia no infravermelho próximo (NIR) de vem sendo realizada com sucesso na Embrapa Soja. Por se tratar de um método que não gera resíduos, rápido e que pode ser realizado em amostras de grãos “in natura” e estar bem calibrado para a determinação do teor de proteínas em grãos de soja, o objetivo do presente trabalho foi avaliar a viabilidade de utilização do NIR em substituição ao método Kjeldahl para determinação da concentração de N total em grãos de soja. Para isso, foram selecionadas 96 amostras nas quais foram determinadas as concentrações de N pelo método Kjeldahl (padrão de comparação) e os teores de proteína com o NIR, que foram convertidos em N, por meio do fator 6,25. As concentrações foram comparadas seguindo o teste proposto por Leite & Oliveira (2002). Originalmente não houve identidade entre os métodos, porém, ao se estimar o teor de N em função da leitura pelo NIR, verificou-se a existência de tendência linear entre os resíduos da regressão e os teores de N pelo método padrão. Assim, ao se corrigir esse desvio sistemático, a estimativa dos teores de N em função da leitura do NIR resultou em teores estatisticamente idênticos aos do método padrão. Portanto, muito embora estudos adicionais sejam necessários, a determinação indireta do teor de N pelo NIR aparenta ser uma metodologia viável

    Heat-kernel Coefficients and Spectra of the Vector Laplacians on Spherical Domains with Conical Singularities

    Get PDF
    The spherical domains SβdS^d_\beta with conical singularities are a convenient arena for studying the properties of tensor Laplacians on arbitrary manifolds with such a kind of singular points. In this paper the vector Laplacian on SβdS^d_\beta is considered and its spectrum is calculated exactly for any dimension dd. This enables one to find the Schwinger-DeWitt coefficients of this operator by using the residues of the ζ\zeta-function. In particular, the second coefficient, defining the conformal anomaly, is explicitly calculated on SβdS^d_\beta and its generalization to arbitrary manifolds is found. As an application of this result, the standard renormalization of the one-loop effective action of gauge fields is demonstrated to be sufficient to remove the ultraviolet divergences up to the first order in the conical deficit angle.Comment: plain LaTeX, 23 pp., revised version, a misprint in expressions (1.8) and (4.38) of the second heat coefficient for the vector Laplacian is corrected. No other change

    RF MEMS ohmic switches for matrix configurations

    Get PDF
    Two different topologies of radio frequency micro-electro-mechanical system (RF MEMS) series ohmic switches (cantilever and clamped–clamped beams) in coplanar waveguide (CPW) configuration have been characterized by means of DC, environmental, and RF measurements. In particular, on-wafer checks have been followed by RF test after vibration, thermal shocks, and temperature cycles. The devices have been manufactured on high resistivity silicon substrates, as building blocks to be implemented in different single-pole 4-throw (SP4 T), double-pole double-throw (DPDT) configurations, and then integrated in Low Temperature Co-fired Ceramics (LTCC) technology for the realization of large-order Clos 3D networks

    Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes

    Full text link
    We perform a detailed analysis of the SO(10) SUSY GUT model with D3 family symmetry of Dermisek and Raby (DR). The model is specified in terms of 24 parameters and predicts, as a function of them, the whole MSSM set of parameters at low energy scales. Concerning the SM subset of such parameters, the model is able to give a satisfactory description of the quark and lepton masses, of the PMNS matrix and of the CKM matrix. We perform a global fit to the model, including flavour changing neutral current (FCNC) processes Bs --> mu+ mu-, B --> Xs gamma, B --> Xs l+ l- and the B(d,s) - bar B(d,s) mass differences Delta M(d,s) as well as the flavour changing (FC) process B+ --> tau+ nu. These observables provide at present the most sensitive probe of the SUSY mass spectrum and couplings predicted by the model. Our analysis demonstrates that the simultaneous description of the FC observables in question represents a serious challenge for the DR model, unless the masses of the scalars are moved to regions which are problematic from the point of view of naturalness and probably beyond the reach of the LHC. We emphasize that this problem could be a general feature of SUSY GUT models with third generation Yukawa unification and weak-scale minimal flavour violation.Comment: 1 + 37 pages, 5 figures, 11 tables. v3: minor typos fixed. Matches JHEP published versio

    Improved Limits on B0B^{0} decays to invisible (+γ)(+\gamma) final states

    Get PDF
    We establish improved upper limits on branching fractions for B0 decays to final States 10 where the decay products are purely invisible (i.e., no observable final state particles) and for final states where the only visible product is a photon. Within the Standard Model, these decays have branching fractions that are below the current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions for these channels. Using 471 million BB pairs collected at the Y(4S) resonance by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National Accelerator Laboratory, we establish upper limits at the 90% confidence level of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid Communications
    corecore