470 research outputs found
Dispersive Soft Ferrite Models For Time Domain Simulation And their application To Accelerator Component Modeling
Project development teams: a novel mechanism for accelerating translational research
The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators.Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds
Electroventilation
Electroventilation is a term used to describe the production of inspiration by applying rhythmic bursts of short duration stimuli to extrathoracic electrodes to stimulate motor nerves to the inspiratory muscles. In the dog, the optimum site for the electrodes was found to be on the upper chest wall, bilaterally. The inspired volume increased with increasing current intensity. The maximum tidal volume attainable was about four times resting tidal volume. The ability of electroventilation to maintain arterial blood oxygen saturation without the production of cardiac arrhythmias was demonstrated in pentobarbital-anesthetized dogs. The technique has several potential applications and offers promise in emergency and critical-care medicine
Electron transport in TiO2 probed by THz time-domain spectroscopy
Euan Hendry, F. Wang, J. Shan, T. F. Heinz, and Mischa Bonn, Physical Review B, Vol. 69, article 081101 (2004). "Copyright © 2004 by the American Physical Society."Electron transport in crystalline TiO2 (rutile phase) is investigated by frequency-dependent conductivity measurements using THz time-domain spectroscopy. Transport is limited by electron-phonon coupling, resulting in a strongly temperature-dependent electron-optical phonon scattering rate, with significant anisotropy in the scattering process. The experimental findings can be described by Feynman polaron theory within the intermediate coupling regime and allow for a determination of electron mobility
Recommended from our members
On the re-acceleration of bunched beams
We examine the re-acceleration of a bunched beam through a linear induction accelerator (LIA) cavity, with attention to the energy lost through coupling to the TM modes of the structure. We find that the energy lost at 1 kA peak current is a small fraction of the boost which the LIA is designed to impart. We discuss implications for a Relativistic Klystron or Free Electron Laser (FEL) version of the Two-Beam Accelerator (TBA). 18 refs., 5 figs., 1 tab
Recommended from our members
200-UP-2 Operable Unit technical baseline report
This report is prepared in support of the development of a Remedial Investigation/Feasibility Study (RI/FS) Work Plan for the 200-UP-2 Operable Unit by EBASCO Environmental, Incorporated. It provides a technical baseline of the 200-UP-2 Operable Unit and results from an environmental investigation undertaken by the Technical Baseline Section of the Environmental Engineering Group, Westinghouse Hanford Company (Westinghouse Hanford). The 200-UP-2 Operable Unit Technical Baseline Report is based on review and evaluation of numerous Hanford Site current and historical reports, Hanford Site drawings and photographs and is supplemented with Hanford Site inspections and employee interviews. No field investigations or sampling were conducted. Each waste site in the 200-UP-2 Operable Unit is described separately. Close relationships between waste units, such as overflow from one to another, are also discussed. The 200-UP-2 Operable Unit consists of liquid-waste disposal sites in the vicinity of, and related to, U Plant operations in the 200 West Area of the Hanford Site. The U Plant'' refers to the 221-U Process Canyon Building, a chemical separations facility constructed during World War 2. It also includes the Uranium Oxide (UO{sub 3}) Plant, which was constructed at the same time and, like the 221-U Process Canyon Building, was later converted for other missions. Waste sites in the 200-UP-2 Operable Unit are associated with the U Plant Uranium Metal Recovery Program mission that occurred between 1952 and 1958 and the UO{sub 3} Plant's ongoing uranium oxide mission and include one or more cribs, reverse wells, french drains, septic tanks and drain fields, trenches, catch tanks, settling tanks, diversion boxes, waste vaults, and the lines and encasements that connect them. 11 refs., 1 tab
Recommended from our members
In situ sampling cart development engineering task plan
This Engineering Task Plan (ETP) supports the development for facility use of the next generation in situ sampling system for characterization of tank vapors. In situ sampling refers to placing sample collection devices (primarily sorbent tubes) directly into the tank headspace, then drawing tank gases through the collection devices to obtain samples. The current in situ sampling system is functional but was not designed to provide the accurate flow measurement required by today`s data quality objectives (DQOs) for vapor characterization. The new system will incorporate modern instrumentation to achieve much tighter control. The next generation system will be referred to in this ETP as the New In Situ System (NISS) or New System. The report describes the current sampling system and the modifications that are required for more accuracy
- …
