965 research outputs found
Recommended from our members
Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice.
Hepcidin is a liver-derived peptide hormone that controls systemic iron homeostasis. Its expression is regulated by the bone morphogenetic protein 6 (BMP6)/SMAD1/5/8 pathway and by the proinflammatory cytokine interleukin 6 (IL6). Proteoglycans that function as receptors of these signaling proteins in the liver are commonly decorated by heparan sulfate, but the potential role of hepatic heparan sulfate in hepcidin expression and iron homeostasis is unclear. Here, we show that modulation of hepatic heparan sulfate significantly alters hepcidin expression and iron metabolism both in vitro and in vivo Specifically, enzymatic removal of heparan sulfate from primary human hepatocytes, CRISPR/Cas9 manipulation of heparan sulfate biosynthesis in human hepatoma cells, or pharmacological manipulation of heparan sulfate-protein interactions using sodium chlorate or surfen dramatically reduced baseline and BMP6/SMAD1/5/8-dependent hepcidin expression. Moreover inactivation of the heparan sulfate biosynthetic gene N-deacetylase and N-sulfotransferase 1 (Ndst1) in murine hepatocytes (Ndst1 f/f AlbCre +) reduced hepatic hepcidin expression and caused a redistribution of systemic iron, leading to iron accumulation in the liver and serum of mice. Manipulation of heparan sulfate had a similar effect on IL6-dependent hepcidin expression in vitro and suppressed IL6-mediated iron redistribution induced by lipopolysaccharide in vivo These results provide compelling evidence that hepatocyte heparan sulfate plays a key role in regulating hepcidin expression and iron homeostasis in mice and in human hepatocytes
Black Hole Evaporation in an Expanding Universe
We calculate the quantum radiation power of black holes which are asymptotic
to the Einstein-de Sitter universe at spatial and null infinities. We consider
two limiting mass accretion scenarios, no accretion and significant accretion.
We find that the radiation power strongly depends on not only the asymptotic
condition but also the mass accretion scenario. For the no accretion case, we
consider the Einstein-Straus solution, where a black hole of constant mass
resides in the dust Friedmann universe. We find negative cosmological
correction besides the expected redshift factor. This is given in terms of the
cubic root of ratio in size of the black hole to the cosmological horizon, so
that it is currently of order but could have been significant at the formation epoch of
primordial black holes. Due to the cosmological effects, this black hole has
not settled down to an equilibrium state. This cosmological correction may be
interpreted in an analogy with the radiation from a moving mirror in a flat
spacetime. For the significant accretion case, we consider the Sultana-Dyer
solution, where a black hole tends to increase its mass in proportion to the
cosmological scale factor. In this model, we find that the radiation power is
apparently the same as the Hawking radiation from the Schwarzschild black hole
of which mass is that of the growing mass at each moment. Hence, the energy
loss rate decreases and tends to vanish as time proceeds. Consequently, the
energy loss due to evaporation is insignificant compared to huge mass accretion
onto the black hole. Based on this model, we propose a definition of
quasi-equilibrium temperature for general conformal stationary black holes.Comment: Accepted for publication in Class.Quant.Grav., 18 pages and 3 figure
The Fulling-Unruh effect in general stationary accelerated frames
We study the generalized Unruh effect for accelerated reference frames that
include rotation in addition to acceleration. We focus particularly on the case
where the motion is planar, with presence of a static limit in addition to the
event horizon. Possible definitions of an accelerated vacuum state are examined
and the interpretation of the Minkowski vacuum state as a thermodynamic state
is discussed. Such athermodynamic state is shown to depend on two parameters,
the acceleration temperature and a drift velocity, which are determined by the
acceleration and angular velocity of the accelerated frame. We relate the
properties of Minkowski vacuum in the accelerated frame to the excitation
spectrum of a detector that is stationary in this frame. The detector can be
excited both by absorbing positive energy quanta in the "hot" vacuum state and
by emitting negative energy quanta into the "ergosphere" between the horizon
and the static limit. The effects are related to similar effects in the
gravitational field of a rotating black hole.Comment: Latex, 39 pages, 5 figure
Gravity from Spinors
We investigate a possible unified theory of all interactions which is based
only on fundamental spinor fields. The vielbein and metric arise as composite
objects. The effective quantum gravitational theory can lead to a modification
of Einstein's equations due to the lack of local Lorentz-symmetry. We explore
the generalized gravity with global instead of local Lorentz symmetry in first
order of a systematic derivative expansion. At this level diffeomorphisms and
global Lorentz symmetry allow for two new invariants in the gravitational
effective action. The one which arises in the one loop approximation to spinor
gravity is consistent with all present tests of general relativity and
cosmology. This shows that local Lorentz symmetry is tested only very partially
by present observations. In contrast, the second possible new coupling is
severely restricted by present solar system observations.Comment: New material on absence of observational tests of local Lorentz
invariance, 21 pages, to appear in Phys.Rev.
GenomeVIP: A cloud platform for genomic variant discovery and interpretation
Identifying genomic variants is a fundamental first step toward the understanding of the role of inherited and acquired variation in disease. The accelerating growth in the corpus of sequencing data that underpins such analysis is making the data-download bottleneck more evident, placing substantial burdens on the research community to keep pace. As a result, the search for alternative approaches to the traditional “download and analyze” paradigm on local computing resources has led to a rapidly growing demand for cloud-computing solutions for genomics analysis. Here, we introduce the Genome Variant Investigation Platform (GenomeVIP), an open-source framework for performing genomics variant discovery and annotation using cloud- or local high-performance computing infrastructure. GenomeVIP orchestrates the analysis of whole-genome and exome sequence data using a set of robust and popular task-specific tools, including VarScan, GATK, Pindel, BreakDancer, Strelka, and Genome STRiP, through a web interface. GenomeVIP has been used for genomic analysis in large-data projects such as the TCGA PanCanAtlas and in other projects, such as the ICGC Pilots, CPTAC, ICGC-TCGA DREAM Challenges, and the 1000 Genomes SV Project. Here, we demonstrate GenomeVIP's ability to provide high-confidence annotated somatic, germline, and de novo variants of potential biological significance using publicly available data sets.</jats:p
Kinks Dynamics in One-Dimensional Coupled Map Lattices
We examine the problem of the dynamics of interfaces in a one-dimensional
space-time discrete dynamical system. Two different regimes are studied : the
non-propagating and the propagating one. In the first case, after proving the
existence of such solutions, we show how they can be described using Taylor
expansions. The second situation deals with the assumption of a travelling wave
to follow the kink propagation. Then a comparison with the corresponding
continuous model is proposed. We find that these methods are useful in simple
dynamical situations but their application to complex dynamical behaviour is
not yet understood.Comment: 17pages, LaTex,3 fig available on cpt.univ-mrs.fr directory
pub/preprints/94/dynamical-systems/94-P.307
Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes
We study the renormalized stress-energy tensor (RSET) for static quantum
states on (n+1)-dimensional, static, spherically symmetric black holes. By
solving the conservation equations, we are able to write the stress-energy
tensor in terms of a single unknown function of the radial co-ordinate, plus
two arbitrary constants. Conditions for the stress-energy tensor to be regular
at event horizons (including the extremal and ``ultra-extremal'' cases) are
then derived using generalized Kruskal-like co-ordinates. These results should
be useful for future calculations of the RSET for static quantum states on
spherically symmetric black hole geometries in any number of space-time
dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for
publication in General Relativity and Gravitatio
Existence and Stability of Steady Fronts in Bistable CML
We prove the existence and we study the stability of the kink-like fixed
points in a simple Coupled Map Lattice for which the local dynamics has two
stable fixed points. The condition for the existence allows us to define a
critical value of the coupling parameter where a (multi) generalized
saddle-node bifurcation occurs and destroys these solutions. An extension of
the results to other CML's in the same class is also displayed. Finally, we
emphasize the property of spatial chaos for small coupling.Comment: 18 pages, uuencoded PostScript file, J. Stat. Phys. (In press
Effective Lagrangian for self-interacting scalar field theories in curved spacetime
We consider a self-interacting scalar field theory in a slowly varying
gravitational background field. Using zeta-function regularization and
heat-kernel techniques, we derive the one-loop effective Lagrangian up to
second order in the variation of the background field and up to quadratic terms
in the curvature tensors. Specializing to different spacetimes of physical
interest, the influence of the curvature on the phase transition is considered.Comment: 14 pages, LaTex, UTF 29
Defect structures in sine-Gordon-like models
We investigate several models described by real scalar fields, searching for
topological defects. Some models are described by a single field, and support
one or two topological sectors, and others are two-field models, which support
several topological sectors. Almost all the defect structures that we find are
stable and finite energy solutions of first-order differential equations that
solve the corresponding equations of motion. In particular, for the double
sine-Gordon model we show how to find small and large BPS solutions as
deformations of the BPS solution of the model. And also, for most of
the two field models we find the corresponding integrating factors, which lead
to the complete set of BPS solutions, nicely unveiling how they bifurcate among
the several topological sectors.Comment: RevTex, 18 pages, 17 figures; Version to appear in Physica
- …
