5 research outputs found

    Semantics and Proof Theory of the Epsilon Calculus

    Full text link
    The epsilon operator is a term-forming operator which replaces quantifiers in ordinary predicate logic. The application of this undervalued formalism has been hampered by the absence of well-behaved proof systems on the one hand, and accessible presentations of its theory on the other. One significant early result for the original axiomatic proof system for the epsilon-calculus is the first epsilon theorem, for which a proof is sketched. The system itself is discussed, also relative to possible semantic interpretations. The problems facing the development of proof-theoretically well-behaved systems are outlined.Comment: arXiv admin note: substantial text overlap with arXiv:1411.362

    The Epsilon Calculus and Herbrand Complexity

    Get PDF
    Hilbert's epsilon-calculus is based on an extension of the language of predicate logic by a term-forming operator ϵx\epsilon_{x}. Two fundamental results about the epsilon-calculus, the first and second epsilon theorem, play a role similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential theorems obtained by this elimination procedure.Comment: 23 p
    corecore