3,957 research outputs found
Analysis and measurement of electromagnetic scattering by pyramidal and wedge absorbers
By modifying the reflection coefficients in the Uniform Geometrical Theory of Diffraction a solution that approximates the scattering from a dielectric wedge is found. This solution agrees closely with the exact solution of Rawlins which is only valid for a few minor cases. This modification is then applied to the corner diffraction coefficient and combined with an equivalent current and geometrical optics solutions to model scattering from pyramid and wedge absorbers. Measured results from 12 inch pyramid absorbers from 2 to 18 GHz are compared to calculations assuming the returns add incoherently and assuming the returns add coherently. The measured results tend to be between the two curves. Measured results from the 8 inch wedge absorber are also compared to calculations with the return being dominated by the wedge diffraction. The procedures for measuring and specifying absorber performance are discussed and calibration equations are derived to calculate a reflection coefficient or a reflectivity using a reference sphere. Shaping changes to the present absorber designs are introduced to improve performance based on both high and low frequency analysis. Some prototypes were built and tested
Recommended from our members
Angiolymphoid hyperplasia with eosinophilia treated with Mohs micrographic surgery
A 60-year-old healthy man presented with several enlarging, tender, spontaneously bleeding, and episodically pruritic nodules on his ear. Five agminated pink-red papulonodules of the superior postauricular sulcus were noted on examination. Pathological examination revealed a lobular dermal vascular proliferation with plump endothelial cells protruding into the lumen in a hobnail pattern, along with a dense perivascular inflammatory infiltrate composed of plasma cells, lymphocytes, and numerous eosinophils. The diagnosis of angiolymphoid hyperplasia with eosinophilia was confirmed. After discussing treatment modalities, the patient opted for Mohs micrographic surgery (MMS). Three stages of MMS were able to remove all large vessel involvement and clear the peripheral margins, but the tumor had a complex branching pattern of growth in the deep bed of the wound with numerous tiny foci remaining. Owing to risk of disfigurement, no further excision was undertaken. The area was reconstructed with a temporalis fascia flap and a full-thickness skin graft. Despite remaining microscopic disease, the patient remained without recurrence or symptoms at one year of follow up
Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application
Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application
Materials thermal and thermoradiative properties/characterization technology
Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered
Proceedings: Regenerative Medicine for Lung Diseases: A CIRM Workshop Report.
The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at the University of California, Los Angeles, to discuss regenerative medicine approaches for treatment of lung diseases and to identify the challenges remaining for advancing such treatments to the clinic and market approval. Workshop participants discussed current preclinical and clinical approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recognition that whereas transient cell delivery approaches are leading the way in the clinic, recent advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling, gene editing and replacement methods, and cell engraftment approaches raise the prospect of developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro modeling using lung organoids and "lung on a chip" technology are setting the stage for high quality small molecule drug screening to develop treatments for lung diseases with complex biology. Stem Cells Translational Medicine 2017;6:1823-1828
Strongly magnetized classical plasma models
Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model)
Quantum Effective Action in Spacetimes with Branes and Boundaries
We construct quantum effective action in spacetime with branes/boundaries.
This construction is based on the reduction of the underlying Neumann type
boundary value problem for the propagator of the theory to that of the much
more manageable Dirichlet problem. In its turn, this reduction follows from the
recently suggested Neumann-Dirichlet duality which we extend beyond the tree
level approximation. In the one-loop approximation this duality suggests that
the functional determinant of the differential operator subject to Neumann
boundary conditions in the bulk factorizes into the product of its Dirichlet
counterpart and the functional determinant of a special operator on the brane
-- the inverse of the brane-to-brane propagator. As a byproduct of this
relation we suggest a new method for surface terms of the heat kernel
expansion. This method allows one to circumvent well-known difficulties in heat
kernel theory on manifolds with boundaries for a wide class of generalized
Neumann boundary conditions. In particular, we easily recover several lowest
order surface terms in the case of Robin and oblique boundary conditions. We
briefly discuss multi-loop applications of the suggested Dirichlet reduction
and the prospects of constructing the universal background field method for
systems with branes/boundaries, analogous to the Schwinger-DeWitt technique.Comment: LaTeX, 25 pages, final version, to appear in Phys. Rev.
Pressure measurements in a low-density nozzle plume for code verification
Measurements of Pitot pressure were made in the exit plane and plume of a low-density, nitrogen nozzle flow. Two numerical computer codes were used to analyze the flow, including one based on continuum theory using the explicit MacCormack method, and the other on kinetic theory using the method of direct-simulation Monte Carlo (DSMC). The continuum analysis was carried to the nozzle exit plane and the results were compared to the measurements. The DSMC analysis was extended into the plume of the nozzle flow and the results were compared with measurements at the exit plane and axial stations 12, 24 and 36 mm into the near-field plume. Two experimental apparatus were used that differed in design and gave slightly different profiles of pressure measurements. The DSMC method compared well with the measurements from each apparatus at all axial stations and provided a more accurate prediction of the flow than the continuum method, verifying the validity of DSMC for such calculations
Retarded Green's Functions In Perturbed Spacetimes For Cosmology and Gravitational Physics
Electromagnetic and gravitational radiation do not propagate solely on the
null cone in a generic curved spacetime. They develop "tails," traveling at all
speeds equal to and less than unity. If sizeable, this off-the-null-cone effect
could mean objects at cosmological distances, such as supernovae, appear dimmer
than they really are. Their light curves may be distorted relative to their
flat spacetime counterparts. These in turn could affect how we infer the
properties and evolution of the universe or the objects it contains. Within the
gravitational context, the tail effect induces a self-force that causes a
compact object orbiting a massive black hole to deviate from an otherwise
geodesic path. This needs to be taken into account when modeling the
gravitational waves expected from such sources. Motivated by these
considerations, we develop perturbation theory for solving the massless scalar,
photon and graviton retarded Green's functions in perturbed spacetimes,
assuming these Green's functions are known in the background spacetime. In
particular, we elaborate on the theory in perturbed Minkowski spacetime in
significant detail; and apply our techniques to compute the retarded Green's
functions in the weak field limit of the Kerr spacetime to first order in the
black hole's mass and angular momentum. Our methods build on and generalizes
work appearing in the literature on this topic to date, and lays the foundation
for a thorough, first principles based, investigation of how light propagates
over cosmological distances, within a spatially flat inhomogeneous
Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) universe. This perturbative
scheme applied to the graviton Green's function, when pushed to higher orders,
may provide approximate analytic (or semi-analytic) results for the self-force
problem in the weak field limits of the Schwarzschild and Kerr black hole
geometries.Comment: 23 pages, 5 figures. Significant updates in v2: Scalar, photon and
graviton Green's functions calculated explicitly in Kerr black hole spacetime
up to first order in mass and angular momentum (Sec. V); Visser's van Vleck
determinant result shown to be equivalent to ours in Sec. II. v3: JWKB
discussion moved to introduction; to be published in PR
Quantum gravity at a TeV and the renormalization of Newton's constant
We examine whether renormalization effects can cause Newton¿s constant to change dramatically with energy, perhaps even reducing the scale of quantum gravity to the TeV region without the introduction of extra dimensions. We examine a model that realizes this possibility and describe experimental signatures from the production of small black holes
- …
