635 research outputs found

    Self assembly properties of primitive organic compounds

    Get PDF
    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons

    How Rare Are Extraterrestrial Civilizations and When Did They Emerge?

    Get PDF
    It is shown that, contrary to an existing claim, the near equality between the lifetime of the sun and the timescale of biological evolution on earth does not necessarily imply that extraterrestrial civilizations are exceedingly rare. Furthermore, on the basis of simple assumptions it is demonstrated that a near equality between these two timescales may be the most probable relation. A calculation of the cosmic history of carbon production which is based on the recently determined history of the star formation rate suggests that the most likely time for intelligent civilizations to emerge in the universe, was when the universe was already older then about 10 billion years (for an assumed current age of about 13 billion years).Comment: 11 pages (including 2 figures), accepted for publication in Astrophys. Journa

    Alternate route to soliton solutions in hydrogen-bonded chains

    Full text link
    In this paper we offer an alternate route for investigating soliton solutions in hydrogen-bonded chains. This is done by examining a class of systems of two coupled real scalar fields. We show that this route allows investigating several models for hydrogen-bonded chains in a unified manner. We also show how to investigate interesting issues, in particular the one concerning classical or linear stability of solitonic solutions.Comment: 12 pages. Late

    An interacting spin flip model for one-dimensional proton conduction

    Full text link
    A discrete asymmetric exclusion process (ASEP) is developed to model proton conduction along one-dimensional water wires. Each lattice site represents a water molecule that can be in only one of three states; protonated, left-pointing, and right-pointing. Only a right(left)-pointing water can accept a proton from its left(right). Results of asymptotic mean field analysis and Monte-Carlo simulations for the three-species, open boundary exclusion model are presented and compared. The mean field results for the steady-state proton current suggest a number of regimes analogous to the low and maximal current phases found in the single species ASEP [B. Derrida, Physics Reports, {\bf 301}, 65-83, (1998)]. We find that the mean field results are accurate (compared with lattice Monte-Carlo simulations) only in the certain regimes. Refinements and extensions including more elaborate forces and pore defects are also discussed.Comment: 13pp, 6 fig

    Fast DNA translocation through a solid-state nanopore

    Full text link
    We report translocation experiments on double-strand DNA through a silicon oxide nanopore. Samples containing DNA fragments with seven different lengths between 2000 to 96000 basepairs have been electrophoretically driven through a 10 nm pore. We find a power-law scaling of the translocation time versus length, with an exponent of 1.26 ±\pm 0.07. This behavior is qualitatively different from the linear behavior observed in similar experiments performed with protein pores. We address the observed nonlinear scaling in a theoretical model that describes experiments where hydrodynamic drag on the section of the polymer outside the pore is the dominant force counteracting the driving. We show that this is the case in our experiments and derive a power-law scaling with an exponent of 1.18, in excellent agreement with our data.Comment: 5 pages, 2 figures. Submitted to PR

    Toward homochiral protocells in noncatalytic peptide systems

    Full text link
    The activation-polymerization-epimerization-depolymerization (APED) model of Plasson et al. has recently been proposed as a mechanism for the evolution of homochirality on prebiotic Earth. The dynamics of the APED model in two-dimensional spatially-extended systems is investigated for various realistic reaction parameters. It is found that the APED system allows for the formation of isolated homochiral proto-domains surrounded by a racemate. A diffusive slowdown of the APED network such as induced through tidal motion or evaporating pools and lagoons leads to the stabilization of homochiral bounded structures as expected in the first self-assembled protocells.Comment: 10 pages, 5 figure

    Analytical study of non Gaussian fluctuations in a stochastic scheme of autocatalytic reactions

    Full text link
    A stochastic model of autocatalytic chemical reactions is studied both numerically and analytically. The van Kampen perturbative scheme is implemented, beyond the second order approximation, so to capture the non Gaussianity traits as displayed by the simulations. The method is targeted to the characterization of the third moments of the distribution of fluctuations, originating from a system of four populations in mutual interaction. The theory predictions agree well with the simulations, pointing to the validity of the van Kampen expansion beyond the conventional Gaussian solution.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Development of Solid-State Nanopore Technology for Life Detection

    Get PDF
    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA
    corecore