816 research outputs found

    A framework for digital sunken relief generation based on 3D geometric models

    Get PDF
    Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose

    Biomass burning and urban air pollution over the Central Mexican Plateau

    Get PDF
    Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB) significantly impacted air quality in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron aerosol scattering, and one third of the enhancement in benzene, reactive nitrogen, and carbon monoxide in the outflow from the plateau. The combination of biomass burning and anthropogenic emissions will affect ozone chemistry in the MC outflow

    Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

    Full text link
    This paper provides a tutorial and survey for a specific kind of illustrative visualization technique: feature lines. We examine different feature line methods. For this, we provide the differential geometry behind these concepts and adapt this mathematical field to the discrete differential geometry. All discrete differential geometry terms are explained for triangulated surface meshes. These utilities serve as basis for the feature line methods. We provide the reader with all knowledge to re-implement every feature line method. Furthermore, we summarize the methods and suggest a guideline for which kind of surface which feature line algorithm is best suited. Our work is motivated by, but not restricted to, medical and biological surface models.Comment: 33 page

    Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B

    Get PDF
    In-situ airborne measurements of trace gases, aerosol size distributions, chemistry and optical properties were conducted over Mexico and the Eastern North Pacific during MILAGRO and INTEX-B. Heterogeneous reactions between secondary aerosol precursor gases and mineral dust lead to sequestration of sulfur, nitrogen and chlorine in the supermicrometer particulate size range. Simultaneous measurements of aerosol size distributions and weak-acid soluble calcium result in an estimate of 11 wt% of CaCO_3 for Asian dust. During transport across the North Pacific, ~5–30% of the CaCO_3 is converted to CaSO_4 or Ca(NO_3)_2 with an additional ~4% consumed through reactions with HCl. The 1996 to 2008 record from the Mauna Loa Observatory confirm these findings, indicating that, on average, 19% of the CaCO_3 has reacted to form CaSO_4 and 7% has reacted to form Ca(NO_3)_2 and ~2% has reacted with HCl. In the nitrogen-oxide rich boundary layer near Mexico City up to 30% of the CaCO_3 has reacted to form Ca(NO_3)_2 while an additional 8% has reacted with HCl. These heterogeneous reactions can result in a ~3% increase in dust solubility which has an insignificant effect on their optical properties compared to their variability in-situ. However, competition between supermicrometer dust and submicrometer primary aerosol for condensing secondary aerosol species led to a 25% smaller number median diameter for the accumulation mode aerosol. A 10–25% reduction of accumulation mode number median diameter results in a 30–70% reduction in submicrometer light scattering at relative humidities in the 80–95% range. At 80% RH submicrometer light scattering is only reduced ~3% due to a higher mass fraction of hydrophobic refractory components in the dust-affected accumulation mode aerosol. Thus reducing the geometric mean diameter of the submicrometer aerosol has a much larger effect on aerosol optical properties than changes to the hygroscopic:hydrophobic mass fractions of the accumulation mode aerosol. In the presence of dust, nitric acid concentrations are reduced to 85% to 60–80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport

    Quantum control and the Strocchi map

    Get PDF
    Identifying the real and imaginary parts of wave functions with coordinates and momenta, quantum evolution may be mapped onto a classical Hamiltonian system. In addition to the symplectic form, quantum mechanics also has a positive-definite real inner product which provides a geometrical interpretation of the measurement process. Together they endow the quantum Hilbert space with the structure of a K\"{a}ller manifold. Quantum control is discussed in this setting. Quantum time-evolution corresponds to smooth Hamiltonian dynamics and measurements to jumps in the phase space. This adds additional power to quantum control, non unitarily controllable systems becoming controllable by ``measurement plus evolution''. A picture of quantum evolution as Hamiltonian dynamics in a classical-like phase-space is the appropriate setting to carry over techniques from classical to quantum control. This is illustrated by a discussion of optimal control and sliding mode techniques.Comment: 16 pages Late

    Emissions from biomass burning in the Yucatan

    Get PDF
    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicators of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually high amounts of SO2 and particle chloride, likely due to a strong marine influence on this peninsula. As smoke from one fire aged, the ratio ΔO3/ΔCO increased to ~15% in 1×10^7 molecules/cm^3) that were likely caused in part by high initial HONO (~10% of NO_y). Thus, more research is needed to understand critical post emission processes for the second-largest trace gas source on Earth. It is estimated that ~44 Tg of biomass burned in the Yucatan in the spring of 2006. Mexican BB (including Yucatan BB) and urban emissions from the Mexico City area can both influence the March-May air quality in much of Mexico and the US

    Apportionment of primary and secondary organic aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1)

    Get PDF
    Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionment techniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each of these methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70−90% were observed during midday periods, whereas minimum SOA contributions of ~45% were observed during peak morning traffic periods. These results are contrary to previous estimates of SOA throughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed

    Total Observed Organic Carbon (TOOC): A synthesis of North American observations

    Get PDF
    Measurements of organic carbon compounds in both the gas and particle phases measured upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC) over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 μgC m^−3 from the cleanest site (Trinidad Head) to the most polluted (Mexico City). Organic aerosol makes up 3–17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketene and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source to sink
    corecore