115 research outputs found

    Applicability and precautions of use of liver injury biomarker FibroTest. A reappraisal at 7 years of age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FibroTest (FT) is a validated biomarker of fibrosis. To assess the applicability rate and to reduce the risk of false positives/negatives (RFPN), security algorithms were developed. The aims were to estimate the prevalence of RFPN and of proven failures, and to identify factors associated with their occurrences.</p> <p>Methods</p> <p>Four populations were studied: 954 blood donors (P1), 7,494 healthy volunteers (P2), 345,695 consecutive worldwide sera (P3), including 24,872 sera analyzed in a tertiary care centre (GHPS) (P4). Analytical procedures of laboratories with RFPN > 5% and charts of P4 patients in with RFPN were reviewed.</p> <p>Results</p> <p>The prevalence of RFPN was 0.52% (5/954; 95%CI 0.17-1.22) in P1, 0.51% (38/7494; 0.36-0.70) in P2, and 0.97% (3349/345695; 0.94-1.00) in P3. Three a priori high-risk populations were confirmed: 1.97% in P4, 1.77% in HIV centre and 2.61% in Sub-Saharan origin subjects. RFPN was mostly associated with low haptoglobin (0.46%), and high apolipoproteinA1 (0.21%). A traceability study of a P3 laboratory with RFPFN > 5% permitted to correct analytical procedures.</p> <p>Conclusion</p> <p>The mean applicability rate of Fibrotest was 99.03%. Independent factors associated with the high risk of false positives/negatives were HIV center, subSaharan origin, and a tertiary care reference centre, although the applicability rate remained above 97%.</p

    Diagnostic performance of FibroTest, SteatoTest and ActiTest in patients with NAFLD using the SAF score as histological reference

    Get PDF
    BACKGROUND: Blood tests of liver injury are less well validated in non‐alcoholic fatty liver disease (NAFLD) than in patients with chronic viral hepatitis. AIMS: To improve the validation of three blood tests used in NAFLD patients, FibroTest for fibrosis staging, SteatoTest for steatosis grading and ActiTest for inflammation activity grading. METHODS: We pre‐included new NAFLD patients with biopsy and blood tests from a single‐centre cohort (FibroFrance) and from the multicentre FLIP consortium. Contemporaneous biopsies were blindly assessed using the new steatosis, activity and fibrosis (SAF) score, which provides a reliable and reproducible diagnosis and grading/staging of the three elementary features of NAFLD (steatosis, inflammatory activity) and fibrosis with reduced interobserver variability. We used nonbinary‐ROC (NonBinAUROC) as the main endpoint to prevent spectrum effect and multiple testing. RESULTS: A total of 600 patients with reliable tests and biopsies were included. The mean NonBinAUROCs (95% CI) of tests were all significant (P < 0.0001): 0.878 (0.864–0.892) for FibroTest and fibrosis stages, 0.846 (0.830–0.862) for ActiTest and activity grades, and 0.822 (0.804–0.840) for SteatoTest and steatosis grades. FibroTest had a higher NonBinAUROC than BARD (0.836; 0.820–0.852; P = 0.0001), FIB4 (0.845; 0.829–0.861; P = 0.007) but not significantly different than the NAFLD score (0.866; 0.850–0.882; P = 0.26). FibroTest had a significant difference in median values between adjacent stage F2 and stage F1 contrarily to BARD, FIB4 and NAFLD scores (Bonferroni test P < 0.05). CONCLUSIONS: In patients with NAFLD, SteatoTest, ActiTest and FibroTest are non‐invasive tests that offer an alternative to biopsy, and they correlate with the simple grading/staging of the SAF scoring system across the three elementary features of NAFLD: steatosis, inflammatory activity and fibrosis

    Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon plantations are introduced in climate change policy as an option to slow the build-up of atmospheric carbon dioxide (CO<sub>2</sub>) concentrations. Here we present a methodology to evaluate the potential effectiveness of carbon plantations. The methodology explicitly considers future long-term land-use change around the world and all relevant carbon (C) fluxes, including all natural fluxes. Both issues have generally been ignored in earlier studies.</p> <p>Results</p> <p>Two different baseline scenarios up to 2100 indicate that uncertainties in future land-use change lead to a near 100% difference in estimates of carbon sequestration potentials. Moreover, social, economic and institutional barriers preventing carbon plantations in natural vegetation areas decrease the physical potential by 75–80% or more.</p> <p>Nevertheless, carbon plantations can still considerably contribute to slowing the increase in the atmospheric CO<sub>2 </sub>concentration but only in the long term. The most conservative set of assumptions lowers the increase of the atmospheric CO<sub>2 </sub>concentration in 2100 by a 27 ppm and compensates for 5–7% of the total energy-related CO<sub>2 </sub>emissions. The net sequestration up to 2020 is limited, given the short-term increased need for agricultural land in most regions and the long period needed to compensate for emissions through the establishment of the plantations. The potential is highest in the tropics, despite projections that most of the agricultural expansion will be in these regions. Plantations in high latitudes as Northern Europe and Northern Russia should only be established if the objective to sequester carbon is combined with other activities.</p> <p>Conclusion</p> <p>Carbon sequestration in plantations can play an important role in mitigating the build-up of atmospheric CO<sub>2</sub>. The actual magnitude depends on natural and management factors, social barriers, and the time frame considered. In addition, there are a number of ancillary benefits for local communities and the environment. Carbon plantations are, however, particularly effective in the long term. Furthermore, plantations do not offer the ultimate solution towards stabilizing CO<sub>2 </sub>concentrations but should be part of a broader package of options with clear energy emission reduction measures.</p

    6 Thrombosis and Immune Disorders

    Full text link

    Identification of a collagen-binding protein from Necator americanus by using a cDNA-expression phage display library

    No full text
    A phage display library was made starting from a cDNA library from the hematophagous human parasite Necator americanus. The cDNA library was transferred by polymerase chain reaction (PCR) cloning into phage display vectors (phagemids), using specially designed primers such that proteins would be expressed as fusions with the C-terminal part of the phage coat protein pVI. The vectors used are multicloning site variants of the original pDONG vectors described by Jespers et al. (1995). Electroporation of the ligation mixtures into electrocompetent Escherichia coli TGI cells yielded 3 x 10(8) pG6A, 1.9 x 10(8) pG6B, and 1 x 10(8) pG6C transfectants for N. americanus. The final libraries consisted of a mix of equal numbers of insert-containing phages from the A, B, and C libraries. Selection of phages for binding to human collagen was performed. Four rounds of panning on human collagens I and III resulted in a significant enrichment of collagen-binding phages from the N. americanus libraries. PCR analysis revealed various insert lengths; however, sequence determination indicated that all phages contained the same protein, albeit with different poly-A tail lengths. The encoded protein itself is a 135-amino acid protein (15 kDa), with no apparent homology to any other known protein. Next the protein was recloned into E. coli using the pET-15b-vector. Upon isopropyl-1-thio-beta-D-galactopyranoside induction, the recombinant protein, rNecH1, could be recovered by urea treatment from inclusion bodies. The rNecH1 protein binds to different collagens: human I > rat I > human III = calf skin I in a specific, dose-dependent, and saturable manner.status: publishe
    corecore