65 research outputs found
Differential Effects of Vpr on Single-cycle and Spreading HIV-1 Infections in CD4+ T-cells and Dendritic Cells
The Vpr protein of human immunodeficiency virus type 1 (HIV-1) contributes to viral replication in non-dividing cells, specifically those of the myeloid lineage. However, the effects of Vpr in enhancing HIV-1 infection in dendritic cells have not been extensively investigated. Here, we evaluated the role of Vpr during infection of highly permissive peripheral blood mononuclear cells (PBMCs) and CD4+ T-cells and compared it to that of monocyte-derived dendritic cells (MDDCs), which are less susceptible to HIV-1 infection. Infections of dividing PBMCs and non-dividing MDDCs were carried out with single-cycle and replication-competent HIV-1 encoding intact Vpr or Vpr-defective mutants. In contrast to previous findings, we observed that single-cycle HIV-1 infection of both PBMCs and MDDCs was significantly enhanced in the presence of Vpr when the viral stocks were carefully characterized and titrated. HIV-1 DNA quantification revealed that Vpr only enhanced the reverse transcription and nuclear import processes in single-cycle HIV-1 infected MDDCs, but not in CD4+ T-cells. However, a significant enhancement in HIV-1 gag mRNA expression was observed in both CD4+ T-cells and MDDCs in the presence of Vpr. Furthermore, Vpr complementation into HIV-1 virions did not affect single-cycle viral infection of MDDCs, suggesting that newly synthesized Vpr plays a significant role to facilitate single-cycle HIV-1 infection. Over the course of a spreading infection, Vpr significantly enhanced replication-competent HIV-1 infection in MDDCs, while it modestly promoted viral infection in activated PBMCs. Quantification of viral DNA in replication-competent HIV-1 infected PBMCs and MDDCs revealed similar levels of reverse transcription products, but increased nuclear import in the presence of Vpr independent of the cell types. Taken together, our results suggest that Vpr has differential effects on single-cycle and spreading HIV-1 infections, which are dependent on the permissiveness of the target cell
The role of N-glycans of HIV-1 gp41 in virus infectivity and susceptibility to the suppressive effects of carbohydrate-binding agents
Demonstration of two distinct cytopathic effects with syncytium formation-defective human immunodeficiency virus type 1 mutants
The mechanism of human immunodeficiency virus type 1 (HIV-1) cytopathicity is poorly understood and might involve formation of multinucleated giant cells (syncytia), single-cell lysis, or both. In order to determine the contributions of the fusion domain to syncytium formation, single-cell lysis, and viral infectivity and to clarify the molecular details of these events, insertion mutations were made in the portion of env encoding this sequence in the functional HIV-1 proviral clone HXB2. Viruses produced from these mutant clones were found to have a partial (F3) or complete (F6) loss of syncytium-forming ability in acutely infected CEM, Sup T1, and MT4 T-cell lines. During the early stage of acute infection by F6 virus, there was a loss of the syncytial cytopathic effect, which resulted in increased cell viability, and a 1.9- to 2.6-fold increase in virus yield in the cell lines tested. In the late stage of acute infection, the single-cell cytopathic effect of F6 virus was similar to that of the parental HXB2 virus. The F3 and F6 viruses were also found to have a 1.7- to 43-fold reduction in infectivity compared with the HXB2 virus. The mutant F3 and F6 and parental HXB2 envelope proteins were expressed in vaccinia virus, and the mutant envelope proteins were observed to be defective in their ability to form syncytia. BSC-40 cells infected with vaccinia virus recombinants revealed no differences in kinetics of cleavage, cell surface expression, or CD4 binding capacity of the mutant and parental envelope proteins. These results demonstrate that a loss of syncytium formation results in an attenuation of infectivity and a loss of the syncytial cytopathic effect without a loss of single-cell lysis. These mutants may reflect in tissue culture the changes observed in the HIV isolates in vivo during disease progression, which exhibit marked differences in syncytium production.</jats:p
Conserved cysteine residues in the human immunodeficiency virus type 1 transmembrane envelope protein are essential for precursor envelope cleavage
The transmembrane (TM) protein of human immunodeficiency virus type 1 has been demonstrated to be involved in viral infectivity and syncytium formation. Two highly conserved cysteine residues in the extracellular region of the TM protein are shown to be essential for processing the 160-kDa envelope precursor into the active 120- and 41-kDa mature forms.</jats:p
Viral protein R of human immunodeficiency virus types 1 and 2 is dispensable for replication and cytopathogenicity in lymphoid cells
Viral protein R (VPR) is conserved in human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). To assess its function, we have constructed mutations within the vpr coding regions of HIV-1 and HIV-2 predicted to express truncated VPR products. Infectious virus was produced by each proviral clone and showed similar replication kinetics and cytopathogenicity when compared with the corresponding parental proviral clone.</jats:p
Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable.
The t(1;19) chromosomal translocation in acute lymphoblastic leukemias creates chimeric E2a-Pbx1 oncoproteins that can act as DNA-binding activators of transcription. A structural analysis of the functional domains of E2a-Pbx1 showed that portions of both E2a and Pbx1 were essential for transformation of NIH 3T3 cells and transcriptional activation of synthetic reporter genes containing PBX1 consensus binding sites. Hyperexpression of wild-type or experimentally truncated Pbx1 proteins was insufficient for transformation, consistent with their inability to activate transcription. When fused with E2a, the Pbx-related proteins Pbx2 and Pbx3 were also transformation competent, demonstrating that all known members of this highly similar subfamily of homeodomain proteins have latent oncogenic potential. The oncogenic contributions of E2a to the chimeras were localized to transactivation motifs AD1 and AD2, as their mutation significantly impaired transformation. Either the homeodomain or Pbx1 amino acids flanking this region could mediate transformation when fused to E2a. However, the homeodomain was not essential for transformation, since a mutant E2a-Pbx1 protein (E2a-Pbx delta HD) lacking the homeodomain efficiently transformed fibroblasts and induced malignant lymphomas in transgenic mice. Thus, transformation mediated by the chimeric oncoprotein E2a-Pbx1 is absolutely dependent on motifs acquired from E2a but the Pbx1 homeodomain is optional. The latter finding suggests that E2a-Pbx1 may interact with cellular proteins that assist or mediate alterations in gene expression responsible for oncogenesis even in the absence of homeodomain-DNA interactions
Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells
Abstract
Interleukin-6 (IL-6), a product of bone marrow stromal cells (BMSCs), is a growth factor for multiple myeloma (MM) cells. Transforming growth factor-beta1 (TGF-beta1) is also produced by BMSCs and can regulate IL- 6 secretion by several tissues, including BMSCs. The present study was designed to characterize in vitro tumor growth regulation by TGF-beta1 in MM. Sorted CD38+CD45RA- MM cells secreted significantly more TGF- beta1 (8.2 +/- 2.0 ng/mL) than peripheral blood mononuclear cells (P < .001), splenic B cells (P < .001), and CD40 ligand (CD40L) pretreated B cells (P < .05). TGF-beta1 secretion by MM-BMMCs (3.8 +/- 0.9 ng/mL) was significantly greater than by N-BMMCs (1.2 +/- 0.1 ng/mL, P < .001). MM-BMSCs also secreted significantly more TGF-beta1 (6.6 +/- 2.5 ng/mL, n = 11) than N-BMSCs (4.4 +/- 0.6 ng/mL, P < .02, n = 10) and N- BMSC lines (3.9 +/- 0.2 ng/mL, P < .02, n = 6). TGF-beta1 secretion was correlated with IL-6 secretion in MM-BMSCs. Anti-TGF-beta1 monoclonal antibody both blocked IL-6 secretion by BMSCs and inhibited the increments in IL-6 secretion by BMSCs induced by MM cell adhesion. Moreover, exogenous TGF-beta1 upregulated IL-6 secretion by MM-BMSCs, normal BMSCs, and CD38+ CD45RA- MM cells, as well as tumor cell proliferation. This is in contrast to the inhibitory effect of TGF- beta1 on proliferation and Ig secretion of normal splenic B cells. Finally, retinoblastoma proteins (pRB) are constitutively phosphorylated in MM cells; TGF-beta1 either did not alter or increased pRB phosphorylation. pRB are dephosphorylated in splenic B cells and phosphorylated in CD40L triggered B cells in contrast to its effects on MM cells, TGF-beta1 decreased phosphorylation of pRB in CD40L treated B cells. These results suggest that TGF-beta1 is produced in MM by both tumor cells and BMSCs, with related tumore cell growth. Moreover, MM cell growth may be enhanced by resistance of tumor cells to the inhibitory effects of TGF-beta1 on normal B-cell proliferation and Ig secretion.</jats:p
- …
