4,722 research outputs found
Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: Implication for neuroprotective therapies
Neuroprotective therapies based on brain-derived neurotrophic factor (BDNF) administration have been proposed for Huntington's disease (HD) treatment. However, our group has recently reported reduced levels of TrkB in HD mouse models and HD human brain suggesting that besides a decrease on BDNF levels a reduction of TrkB expression could also contribute to diminished neurotrophic support in HD. BDNF can also bind to p75 neurotrophin receptor (p75(NTR)) modulating TrkB signaling. Therefore, in this study we have analyzed the levels of p75(NTR) in several HD models, as well as in HD human brain. Our data demonstrates a p75(NTR)/TrkB imbalance in the striatum of two different HD mouse models, Hdh(Q111/111) homozygous knockin mice and R6/1 mice that was also manifested in the putamen of HD patients. The imbalance between TrkB and p75(NTR) levels in a HD cellular model did not affect BDNF-mediated TrkB activation of prosurvival pathways but induced activation of apoptotic cascades as demonstrated by increased JNK phosphorylation. Moreover, BDNF failed to protect mutant huntingtin striatal cells transfected with p75(NTR) against NMDA-mediated excitotoxicity, which was associated with decreased Akt phosphorylation. Interestingly, lack of Akt activation following BDNF and NMDA treatment correlated with increased PP1 levels. Accordingly, pharmacological inhibition of PP1 by okadaic acid (OA) prevented mutant huntingtin striatal cell death induced by NMDA and BDNF. Altogether, our findings demonstrate that the p75(NTR)/TrkB imbalance induced by mutant huntingtin in striatal cells associated with the aberrant activity of PP1 disturbs BDNF neuroprotection likely contributing to increasing striatal vulnerability in HD. On the basis of this data we hypothesize that normalization of p75(NTR) and/or TrkB expression or their signaling will improve BDNF neuroprotective therapies in HD. Cell Death and Disease (2013) 4, e595; doi:10.1038/cddis.2013.116; published online 18 April 201
Quiet Sun magnetic fields from space-borne observations: simulating Hinode's case
We examine whether or not it is possible to derive the field strength
distribution of quiet Sun internetwork regions from very high spatial
resolution polarimetric observations in the visible. In particular, we consider
the case of the spectropolarimeter attached to the Solar Optical Telescope
aboard Hinode. Radiative magneto-convection simulations are used to synthesize
the four Stokes profiles of the \ion{Fe}{1} 630.2 nm lines. Once the profiles
are degraded to a spatial resolution of 0\farcs32 and added noise, we infer the
atmospheric parameters by means of Milne-Eddington inversions. The comparison
of the derived values with the real ones indicates that the visible lines yield
correct internetwork field strengths and magnetic fluxes, with uncertainties
smaller than 150 G, when a stray light contamination factor is included
in the inversion. Contrary to the results of ground-based observations at
1\arcsec, weak fields are retrieved wherever the field is weak in the
simulation.Comment: Accepted for publication in ApJ Letter
The formation and disintegration of magnetic bright points observed by Sunrise/IMaX
The evolution of the physical parameters of magnetic bright points (MBPs)
located in the quiet Sun (mainly in the interwork) during their lifetime is
studied. First we concentrate on the detailed description of the magnetic field
evolution of three MBPs. This reveals that individual features follow
different, generally complex, and rather dynamic scenarios of evolution. Next
we apply statistical methods on roughly 200 observed MBP evolutionary tracks.
MBPs are found to be formed by the strengthening of an equipartition field
patch, which initially exhibits a moderate downflow. During the evolution,
strong downdrafts with an average velocity of 2.4 km/s set in. These flows,
taken together with the concurrent strengthening of the field, suggest that we
are witnessing the occurrence of convective collapses in these features,
although only 30% of them reach kG field strengths. This fraction might turn
out to be larger when the new 4 m class solar telescopes are operational as
observations of MBPs with current state of the art instrumentation could still
be suffering from resolution limitations. Finally, when the bright point
disappears (although the magnetic field often continues to exist) the magnetic
field strength has dropped to the equipartition level and is generally somewhat
weaker than at the beginning of the MBP's evolution. Noteworthy is that in
about 10% of the cases we observe in the vicinity of the downflows small-scale
strong (exceeding 2 km/s) intergranular upflows related spatially and
temporally to these downflows.Comment: 19 pages, 13 figures; final version published in "The Astrophysical
Journal
Evershed clouds as precursors of moving magnetic features around sunspots
The relation between the Evershed flow and moving magnetic features (MMFs) is
studied using high-cadence, simultaneous spectropolarimetric measurements of a
sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler
velocities, magnetograms, and total linear polarization maps are calculated
from the observed Stokes profiles. We follow the temporal evolution of two
Evershed clouds that move radially outward along the same penumbral filament.
Eventually, the clouds cross the visible border of the spot and enter the moat
region, where they become MMFs. The flux patch farther from the sunspot has the
same polarity of the spot, while the MMF closer to it has opposite polarity and
exhibits abnormal circular polarization profiles. Our results provide strong
evidence that at least some MMFs are the continuation of the penumbral Evershed
flow into the moat. This, in turn, suggests that MMFs are magnetically
connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu
Temporal evolution of the Evershed flow in sunspots. II. Physical properties and nature of Evershed clouds
Context: Evershed clouds (ECs) represent the most conspicuous variation of
the Evershed flow in sunspot penumbrae. Aims: We determine the physical
properties of ECs from high spatial and temporal resolution spectropolarimetric
measurements. Methods: The Stokes profiles of four visible and three infrared
spectral lines are subject to inversions based on simple one-component models
as well as more sophisticated realizations of penumbral flux tubes embedded in
a static ambient field (uncombed models). Results: According to the
one-component inversions, the EC phenomenon can be understood as a perturbation
of the magnetic and dynamic configuration of the penumbral filaments along
which these structures move. The uncombed inversions, on the other hand,
suggest that ECs are the result of enhancements in the visibility of penumbral
flux tubes. We conjecture that the enhancements are caused by a perturbation of
the thermodynamic properties of the tubes, rather than by changes in the vector
magnetic field. The feasibility of this mechanism is investigated performing
numerical experiments of thick penumbral tubes in mechanical equilibrium with a
background field. Conclusions: While the one-component inversions confirm many
of the properties indicated by a simple line parameter analysis (Paper I of
this series), we tend to give more credit to the results of the uncombed
inversions because they take into account, at least in an approximate manner,
the fine structure of the penumbra.Comment: Accepted for publication in A&
Regulation of oxygen sensing by ion channels
O2 sensing is of critical importance for cell survival and adaptation of living organisms to changing environments or physiological conditions. O2-sensitive ion channels are major effectors of the cellular responses to hypoxia. These channels are preferentially found in excitable neurosecretory cells (glomus cells of the carotid body, cells in the neuroepithelial bodies of the lung, and neonatal adrenal chromaffin cells), which mediate fast cardiorespiratory adjustments to hypoxia. O2- sensitive channels are also expressed in the pulmonary and systemic arterial smooth muscle cells where they participate in the vasomotor responses to low O2 tension (particularly in hypoxic pulmonary vasoconstriction). The mechanisms underlying O2 sensing and how the O2 sensors interact with the ion channels remain unknown. Recent advances in the field give different support to the various current hypotheses. Besides the participation of ion channels in acute O2 sensing, they also contribute to the gene program developed under chronic hypoxia. Gene expression of T-type calcium channels is upregulated by hypoxia through the same hypoxiainducible factor-dependent signaling pathway utilized by the classical O2-regulated genes. Alteration of acute or chronic O2 sensing by ion channels could participate in the pathophysiology of human diseases, such as sudden infant death syndrome or primary pulmonary hypertension
- …
