763 research outputs found
Herschel Far-IR counterparts of SDSS galaxies: Analysis of commonly used Star Formation Rate estimates
We study a hundred of galaxies from the spectroscopic Sloan Digital Sky
Survey with individual detections in the Far-Infrared Herschel PACS bands (100
or 160 m) and in the GALEX Far-UltraViolet band up to z0.4 in the
COSMOS and Lockman Hole fields. The galaxies are divided into 4 spectral and 4
morphological types. For the star forming and unclassifiable galaxies we
calculate dust extinctions from the UV slope, the H/H ratio and
the ratio. There is a tight correlation between the
dust extinction and both and metallicity. We calculate
SFR and compare it with other SFR estimates (H, UV, SDSS)
finding a very good agreement between them with smaller dispersions than
typical SFR uncertainties. We study the effect of mass and metallicity, finding
that it is only significant at high masses for SFR. For the AGN and
composite galaxies we find a tight correlation between SFR and L
(0.29), while the dispersion in the SFR - L relation is
larger (0.57). The galaxies follow the prescriptions of the
Fundamental Plane in the M-Z-SFR space.Comment: 24 pages, 23 figures, accepted for publication in MNRA
"Even if the test result is negative, they should be able to tell us what is wrong with us": a qualitative study of patient expectations of rapid diagnostic tests for malaria.
BACKGROUND: The debate on rapid diagnostic tests (RDTs) for malaria has begun to shift from whether RDTs should be used, to how and under what circumstances their use can be optimized. This has increased the need for a better understanding of the complexities surrounding the role of RDTs in appropriate treatment of fever. Studies have focused on clinician practices, but few have sought to understand patient perspectives, beyond notions of acceptability. METHODS: This qualitative study aimed to explore patient and caregiver perceptions and experiences of RDTs following a trial to assess the introduction of the tests into routine clinical care at four health facilities in one district in Ghana. Six focus group discussions and one in-depth interview were carried out with those who had received an RDT with a negative test result. RESULTS: Patients had high expectations of RDTs. They welcomed the tests as aiding clinical diagnoses and as tools that could communicate their problem better than they could, verbally. However, respondents also believed the tests could identify any cause of illness, beyond malaria. Experiences of patients suggested that RDTs were adopted into an existing system where patients are both physically and intellectually removed from diagnostic processes and where clinicians retain authority that supersedes tests and their results. In this situation, patients did not feel able to articulate a demand for test-driven diagnosis. CONCLUSIONS: Improvements in communication between the health worker and patient, particularly to explain the capabilities of the test and management of RDT negative cases, may both manage patient expectations and promote patient demand for test-driven diagnoses
The AGN content in luminous IR galaxies at z\sim2 from a global SED analysis including Herschel data
We use Herschel-PACS far-infrared data, combined with previous multi-band
information and mid-IR spectra, to properly account for the presence of an
active nucleus and constrain its energetic contribution in luminous infrared
(IR) sources at z\sim2. The sample is composed of 24 sources in the GOODS-South
field, with typical IR luminosity of 10^{12} Lo. Data from the 4 Ms Chandra
X-ray imaging in this field are also used to identify and characterize AGN
emission. We reproduce the observed spectral energy distribution (SED),
decomposed into a host-galaxy and an AGN component. A smooth-torus model for
circum-nuclear dust is used to account for the direct and re-processed
contribution from the AGN. We confirm that galaxies with typical
L_{8-1000um}\sim10^{12}Lo at z\sim2 are powered predominantly by
star-formation. An AGN component is present in nine objects (\sim35% of the
sample) at the 3sigma confidence level, but its contribution to the 8-1000 um
emission accounts for only \sim5% of the energy budget. The AGN contribution
rises to \sim23% over the 5-30 um range (in agreement with Spitzer IRS results)
and to \sim60% over the narrow 2-6 um range. The presence of an AGN is
confirmed by X-ray data for 3 (out of nine) sources, with X-ray spectral
analysis indicating the presence of significant absorption, i.e.
NH\sim10^{23}-10^{24} cm^{-2}. An additional source shows indications of
obscured AGN emission from X-ray data. The comparison between the
mid-IR--derived X-ray luminosities and those obtained from X-ray data suggests
that obscuration is likely present also in the remaining six sources that
harbour an AGN according to the SED-fitting analysis.Comment: 12 pages, including 5 figures. Accepted for publication in MNRA
Compton Thick AGN in the XMM-COSMOS survey
Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an
important phase in AGN/galaxy co-evolution and are expected to provide a
significant contribution to the cosmic X-ray background (CXB). Through direct
X-ray spectra analysis, we selected 39 heavily obscured AGN (NH>3x10^23 cm^-2)
in the 2 deg^2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a
simple absorbed two power law model to the XMM data, the presence of CT AGN was
confirmed in 80% of the sources using deeper Chandra data and more complex
models. The final sample of CT AGN comprises 10 sources spanning a large range
of redshift and luminosity. We collected the multi-wavelength information
available for all these sources, in order to study the distribution of SMBH and
host properties, such as BH mass (M_BH), Eddington ratio (\lambda_Edd), stellar
mass (M*), specific star formation rate (sSFR) in comparison with a sample of
unobscured AGN. We find that highly obscured sources tend to have significantly
smaller M_BH and higher \lambda_edd with respect to unobscured ones, while a
weaker evolution in M* is observed. The sSFR of highly obscured sources is
consistent with the one observed in the main sequence of star forming galaxies,
at all redshift. We also present optical spectra, spectral energy distribution
(SED) and morphology for the sample of 10 CT AGN: all the available optical
spectra are dominated by the stellar component of the host galaxy, and a highly
obscured torus component is needed in the SED of the CT sources. Exploiting the
high resolution Hubble-ACS images available, we conclude that these highly
obscured sources have a significantly larger merger fraction with respect to
other X-ray selected samples of AGN. Finally we discuss implications in the
context of AGN/galaxy co-evolutionary models, and compare our results with the
predictions of CXB synthesis models.Comment: Revised version after referee comments. Accepted for publication in
Astronomy & Astrophysics on 25 November 2014. 23 pages, 2 tables, 16 figure
Tracing the cosmic growth of supermassive black holes to z~3 with Herschel
We study a sample of Herschel selected galaxies within the Great Observatories Origins Deep Survey-South and the Cosmic Evolution Survey fields in the framework of the Photodetector Array Camera and Spectrometer (PACS) Evolutionary Probe project. Starting from the rich multiwavelength photometric data sets available in both fields, we perform a broad-band spectral energy distribution decomposition to disentangle the possible active galactic nucleus (AGN) contribution from that related to the host galaxy. We find that 37 per cent of the Herschel-selected sample shows signatures of nuclear activity at the 99 per cent confidence level. The probability of revealing AGN activity increases for bright (L 1−1000 > 10 11 L ? ) star-forming galaxies at z > 0.3, becoming about 80 per cent for the brightest (L 1−1000 > 10 12 L ? )
Infrared (IR) galaxies at z≥1. Finally, we reconstruct the AGN bolometric luminosity function and the supermassive black hole growth rate across cosmic time up to z ∼ 3 from a far-IR perspective. This work shows general agreement with most of the panchromatic estimates from the literature, with the global black hole growth peaking at z ∼ 2 and reproducing the observed local black hole mass density with consistent values of the radiative efficiency Erad (∼0.07)
The main sequence at z ∼ 1.3 contains a sizable fraction of galaxies with compact star formation sizes: a new population of early post-starbursts?
Atacama Large Millimeter/submillimeter Array (ALMA) measurements for 93 Herschel-selected galaxies at 1.1 ≤ z ≤ 1.7 in COSMOS reveal a sizable (>29%) population with compact star formation (SF) sizes, lying on average >×3.6 below the optical stellar mass (M ⋆)─size relation of disks. This sample widely spans the star-forming main sequence (MS), having 108 ≤ M ⋆ ≤ 1011.5 M ☉ and 20 ≤ star formation rate (SFR) ≤ 680 M ☉ yr−1. The 32 size measurements and 61 upper limits are measured on ALMA images that combine observations of CO(5─4), CO(4─3), CO(2─1), and λ obs ∼ 1.1─1.3 mm continuum, all tracing the star-forming molecular gas. These compact galaxies have instead normally extended K band sizes, suggesting strong specific SFR gradients. Compact galaxies comprise the 50 ± 18% of MS galaxies at M ⋆ > 1011 M ☉. This is not expected in standard bimodal scenarios, where MS galaxies are mostly steadily growing extended disks. We suggest that compact MS objects are early post-starburst galaxies in which the merger-driven boost of SF has subsided. They retain their compact SF size until either further gas accretion restores premerger galaxy-wide SF, or until becoming quenched. The fraction of merger-affected SF inside the MS seems thus larger than anticipated and might reach ∼50% at the highest M ⋆. The presence of large galaxies above the MS demonstrates an overall poor correlation between galaxy SF size and specific SFR
A catalogue of faint local radio AGN and the properties of their host galaxies
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present a catalogue of 2210 local ( z < 0.1) galaxies that contain faint active galactic nuclei (AGN). We select these objects by identifying galaxies that exhibit a significant excess in their radio luminosities, compared to what is expected from the observed levels of star formation activity in these systems. This is achieved by comparing the optical (spectroscopic) star formation rate (SFR) to the 1.4 GHz luminosity measured from the Faint Images of the Radio Sky at Twenty centimeters survey. The majority of the AGN identified in this study are fainter than those in previous work, such as in the Best and Heckman (2012) catalogue. We show that these faint AGN make a non-negligible contribution to the radio luminosity function at low luminosities (below 1022.5 W Hz−1), and host ∼13 per cent of the local radio luminosity budget. Their host galaxies are predominantly high stellar-mass systems (with a median stellar mass of 1011 M⊙), are found across a range of environments (but typically in denser environments than star-forming galaxies) and have early-type morphologies. This study demonstrates a general technique to identify AGN in galaxy populations where reliable optical SFRs can be extracted using spectro-photometry and where radio data are also available so that a radio excess can be measured. Our results also demonstrate that it is unsafe to infer SFRs from radio emission alone, even if bright AGN have been excluded from a sample, since there is a significant population of faint radio AGN that may contaminate the radio-derived SFRs.Peer reviewedFinal Published versio
Observing Supermassive Black Holes across cosmic time: from phenomenology to physics
In the last decade, a combination of high sensitivity, high spatial
resolution observations and of coordinated multi-wavelength surveys has
revolutionized our view of extra-galactic black hole (BH) astrophysics. We now
know that supermassive black holes reside in the nuclei of almost every galaxy,
grow over cosmological times by accreting matter, interact and merge with each
other, and in the process liberate enormous amounts of energy that influence
dramatically the evolution of the surrounding gas and stars, providing a
powerful self-regulatory mechanism for galaxy formation. The different
energetic phenomena associated to growing black holes and Active Galactic
Nuclei (AGN), their cosmological evolution and the observational techniques
used to unveil them, are the subject of this chapter. In particular, I will
focus my attention on the connection between the theory of high-energy
astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used
to uncover them in a statistically robust way. I will show how such a combined
effort of theorists and observers have led us to unveil most of the SMBH growth
over a large fraction of the age of the Universe, but that nagging
uncertainties remain, preventing us from fully understating the exact role of
black holes in the complex process of galaxy and large-scale structure
formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the
book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and
Treves A. (Eds), 2015, Springer International Publishing AG, Cha
- …
