382 research outputs found

    q-deformed harmonic and Clifford analysis and the q-Hermite and Laguerre polynomials

    Get PDF
    We define a q-deformation of the Dirac operator, inspired by the one dimensional q-derivative. This implies a q-deformation of the partial derivatives. By taking the square of this Dirac operator we find a q-deformation of the Laplace operator. This allows to construct q-deformed Schroedinger equations in higher dimensions. The equivalence of these Schroedinger equations with those defined on q-Euclidean space in quantum variables is shown. We also define the m-dimensional q-Clifford-Hermite polynomials and show their connection with the q-Laguerre polynomials. These polynomials are orthogonal with respect to an m-dimensional q-integration, which is related to integration on q-Euclidean space. The q-Laguerre polynomials are the eigenvectors of an su_q(1|1)-representation

    Hermite and Gegenbauer polynomials in superspace using Clifford analysis

    Full text link
    The Clifford-Hermite and the Clifford-Gegenbauer polynomials of standard Clifford analysis are generalized to the new framework of Clifford analysis in superspace in a merely symbolic way. This means that one does not a priori need an integration theory in superspace. Furthermore a lot of basic properties, such as orthogonality relations, differential equations and recursion formulae are proven. Finally, an interesting physical application of the super Clifford-Hermite polynomials is discussed, thus giving an interpretation to the super-dimension.Comment: 18 pages, accepted for publication in J. Phys.

    Spherical harmonics and integration in superspace

    Full text link
    In this paper the classical theory of spherical harmonics in R^m is extended to superspace using techniques from Clifford analysis. After defining a super-Laplace operator and studying some basic properties of polynomial null-solutions of this operator, a new type of integration over the supersphere is introduced by exploiting the formal equivalence with an old result of Pizzetti. This integral is then used to prove orthogonality of spherical harmonics of different degree, Green-like theorems and also an extension of the important Funk-Hecke theorem to superspace. Finally, this integration over the supersphere is used to define an integral over the whole superspace and it is proven that this is equivalent with the Berezin integral, thus providing a more sound definition of the Berezin integral.Comment: 22 pages, accepted for publication in J. Phys.

    Introductory clifford analysis

    Get PDF
    In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications

    Segal-Bargmann-Fock modules of monogenic functions

    Get PDF
    In this paper we introduce the classical Segal-Bargmann transform starting from the basis of Hermite polynomials and extend it to Clifford algebra-valued functions. Then we apply the results to monogenic functions and prove that the Segal-Bargmann kernel corresponds to the kernel of the Fourier-Borel transform for monogenic functionals. This kernel is also the reproducing kernel for the monogenic Bargmann module.Comment: 11 page

    Cardiovascular and pharmacological implications of haem-deficient NO-unresponsive soluble guanylate cyclase knock-in mice

    Get PDF
    Oxidative stress, a central mediator of cardiovascular disease, results in loss of the prosthetic haem group of soluble guanylate cyclase (sGC), preventing its activation by nitric oxide (NO). Here we introduce Apo-sGC mice expressing haem-free sGC. Apo-sGC mice are viable and develop hypertension. The haemodynamic effects of NO are abolished, but those of the sGC activator cinaciguat are enhanced in apo-sGC mice, suggesting that the effects of NO on smooth muscle relaxation, blood pressure regulation and inhibition of platelet aggregation require sGC activation by NO. Tumour necrosis factor (TNF)-induced hypotension and mortality are preserved in apo-sGC mice, indicating that pathways other than sGC signalling mediate the cardiovascular collapse in shock. Apo-sGC mice allow for differentiation between sGC-dependent and -independent NO effects and between haem-dependent and -independent sGC effects. Apo-sGC mice represent a unique experimental platform to study the in vivo consequences of sGC oxidation and the therapeutic potential of sGC activators

    Three-term recurrence relations for systems of Clifford algebra-valued orthogonal polynomials

    Get PDF
    Recently, systems of Clifford algebra-valued orthogonal polynomials have been studied from different points of view. We prove in this paper that for their building blocks there exist some three-term recurrence relations, similar to that for orthogonal polynomials of one real variable. As a surprising byproduct of own interest we found out that the whole construction process of Clifford algebra-valued orthogonal polynomials via Gelfand-Tsetlin basis or otherwise relies only on one and the same basic Appell sequence of polynomials.This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications of the University of Aveiro, the CMAT - Research Centre of Mathematics of the University of Minho and the FCT - Portuguese Foundation for Science and Technology (“Fundação para a Ciˆencia e a Tecnologia”), within projects PEst-OE/MAT/UI4106/2014 and PEst-OE/MAT/UI0013/2014.info:eu-repo/semantics/publishedVersio

    Hypercomplex polynomials, vietoris’ rational numbers and a related integer numbers sequence

    Get PDF
    This paper aims to give new insights into homogeneous hypercomplex Appell polynomials through the study of some interesting arithmetical properties of their coefficients. Here Appell polynomials are introduced as constituting a hypercomplex generalized geometric series whose fundamental role sometimes seems to have been neglected. Surprisingly, in the simplest non-commutative case their rational coefficient sequence reduces to a coefficient sequence S used in a celebrated theorem on positive trigonometric sums by Vietoris (Sitzungsber Österr Akad Wiss 167:125–135, 1958). For S a generating function is obtained which allows to derive an interesting relation to a result deduced by Askey and Steinig (Trans AMS 187(1):295–307, 1974) about some trigonometric series. The further study of S is concerned with a sequence of integers leading to its irreducible representation and its relation to central binomial coefficients.The work of the first and third authors was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), within project PEstOE/MAT/UI4106/2013. The work of the second author was supported by Portuguese funds through the CMAT - Centre of Mathematics and FCT within the Project UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio
    corecore