102 research outputs found

    Quantitative Regular Expressions for Arrhythmia Detection Algorithms

    Full text link
    Motivated by the problem of verifying the correctness of arrhythmia-detection algorithms, we present a formalization of these algorithms in the language of Quantitative Regular Expressions. QREs are a flexible formal language for specifying complex numerical queries over data streams, with provable runtime and memory consumption guarantees. The medical-device algorithms of interest include peak detection (where a peak in a cardiac signal indicates a heartbeat) and various discriminators, each of which uses a feature of the cardiac signal to distinguish fatal from non-fatal arrhythmias. Expressing these algorithms' desired output in current temporal logics, and implementing them via monitor synthesis, is cumbersome, error-prone, computationally expensive, and sometimes infeasible. In contrast, we show that a range of peak detectors (in both the time and wavelet domains) and various discriminators at the heart of today's arrhythmia-detection devices are easily expressible in QREs. The fact that one formalism (QREs) is used to describe the desired end-to-end operation of an arrhythmia detector opens the way to formal analysis and rigorous testing of these detectors' correctness and performance. Such analysis could alleviate the regulatory burden on device developers when modifying their algorithms. The performance of the peak-detection QREs is demonstrated by running them on real patient data, on which they yield results on par with those provided by a cardiologist.Comment: CMSB 2017: 15th Conference on Computational Methods for Systems Biolog

    Completeness for a First-order Abstract Separation Logic

    Full text link
    Existing work on theorem proving for the assertion language of separation logic (SL) either focuses on abstract semantics which are not readily available in most applications of program verification, or on concrete models for which completeness is not possible. An important element in concrete SL is the points-to predicate which denotes a singleton heap. SL with the points-to predicate has been shown to be non-recursively enumerable. In this paper, we develop a first-order SL, called FOASL, with an abstracted version of the points-to predicate. We prove that FOASL is sound and complete with respect to an abstract semantics, of which the standard SL semantics is an instance. We also show that some reasoning principles involving the points-to predicate can be approximated as FOASL theories, thus allowing our logic to be used for reasoning about concrete program verification problems. We give some example theories that are sound with respect to different variants of separation logics from the literature, including those that are incompatible with Reynolds's semantics. In the experiment we demonstrate our FOASL based theorem prover which is able to handle a large fragment of separation logic with heap semantics as well as non-standard semantics.Comment: This is an extended version of the APLAS 2016 paper with the same titl

    Representation of Nelson Algebras by Rough Sets Determined by Quasiorders

    Full text link
    In this paper, we show that every quasiorder RR induces a Nelson algebra RS\mathbb{RS} such that the underlying rough set lattice RSRS is algebraic. We note that RS\mathbb{RS} is a three-valued {\L}ukasiewicz algebra if and only if RR is an equivalence. Our main result says that if A\mathbb{A} is a Nelson algebra defined on an algebraic lattice, then there exists a set UU and a quasiorder RR on UU such that ARS\mathbb{A} \cong \mathbb{RS}.Comment: 16 page

    Reasoning with global assumptions in arithmetic modal logics

    Get PDF
    We establish a generic upper bound ExpTime for reasoning with global assumptions in coalgebraic modal logics. Unlike earlier results of this kind, we do not require a tractable set of tableau rules for the in- stance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that offers potential for practical reasoning

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    Interprocedural Reachability for Flat Integer Programs

    Full text link
    We study programs with integer data, procedure calls and arbitrary call graphs. We show that, whenever the guards and updates are given by octagonal relations, the reachability problem along control flow paths within some language w1* ... wd* over program statements is decidable in Nexptime. To achieve this upper bound, we combine a program transformation into the same class of programs but without procedures, with an Np-completeness result for the reachability problem of procedure-less programs. Besides the program, the expression w1* ... wd* is also mapped onto an expression of a similar form but this time over the transformed program statements. Several arguments involving context-free grammars and their generative process enable us to give tight bounds on the size of the resulting expression. The currently existing gap between Np-hard and Nexptime can be closed to Np-complete when a certain parameter of the analysis is assumed to be constant.Comment: 38 pages, 1 figur

    Expressive Completeness of Separation Logic With Two Variables and No Separating Conjunction ∗

    Get PDF
    We show that first-order separation logic with one record field restricted to two variables and the separating implication (no separating conjunction) is as expressive as weak second-order logic, substantially sharpening a previous result. Capturing weak secondorder logic with such a restricted form of separation logic requires substantial updates to known proof techniques. We develop these, and as a by-product identify the smallest fragment of separation logic known to be undecidable: first-order separation logic with one record field, two variables, and no separating conjunction

    The complexity of clausal fragments of LTL

    Get PDF
    We introduce and investigate a number of fragments of propositional temporal logic LTL over the flow of time (ℤ, <). The fragments are defined in terms of the available temporal operators and the structure of the clausal normal form of the temporal formulas. We determine the computational complexity of the satisfiability problem for each of the fragments, which ranges from NLogSpace to PTime, NP and PSpace

    A modal theorem-preserving translation of a class of three-valued logics of incomplete information

    Get PDF
    International audienceThere are several three-valued logical systems that form a scattered landscape, even if all reasonable connectives in three-valued logics can be derived from a few of them. Most papers on this subject neglect the issue of the relevance of such logics in relation with the intended meaning of the third truth-value. Here, we focus on the case where the third truth-value means unknown, as suggested by Kleene. Under such an understanding, we show that any truth-qualified formula in a large range of three-valued logics can be translated into KD as a modal formula of depth 1, with modalities in front of literals only, while preserving all tautologies and inference rules of the original three-valued logic. This simple information logic is a two-tiered classical propositional logic with simple semantics in terms of epistemic states understood as subsets of classical interpretations. We study in particular the translations of Kleene, Gödel, ᴌukasiewicz and Nelson logics. We show that Priest’s logic of paradox, closely connected to Kleene’s, can also be translated into our modal setting, simply by exchanging the modalities possible and necessary. Our work enables the precise expressive power of three-valued logics to be laid bare for the purpose of uncertainty management
    corecore