1,459 research outputs found
Laser-Evoked Vertex Potentials Predict Defensive Motor Actions
The vertex potential is the largest response that can be recorded in the electroencephalogram of an awake, healthy human. It is elicited by sudden and intense stimuli, and is composed by a negative-positive deflection. The stimulus properties that determine the vertex potential amplitude have been well characterized. Nonetheless, its functional significance remains elusive. The dominant interpretation is that it reflects neural activities related to the detection of salient stimuli. However, given that threatening stimuli elicit both vertex potentials and defensive movements, we hypothesized that the vertex potential is related to the execution of defensive actions. Here, we directly compared the salience and motoric interpretations by investigating the relationship between the amplitude of laser-evoked potentials (LEPs) and the response time of movements with different defensive values. First, we show that a larger LEP negative wave (N2 wave) predicts faster motor response times. Second, this prediction is significantly stronger when the motor response is defensive in nature. Third, the relation between the N2 wave and motor response time depends not only on the kinematic form of the movement, but also on whether that kinematic form serves as a functional defense of the body. Therefore, the N2 wave of the LEP encodes key defensive reactions to threats
‘ An investigation of the nervous control of defecation ’ by Denny-Brown and Robertson: a classic paper revisited
In 1935 two young neurologists, Derek Denny-Brown and E. Graeme Robertson, published an article explaining the mechanisms underlying human defaecation based on a manometric study in patients with sacral root and spinal cord lesions, and normal subjects. This article is still routinely cited in studies of rectal and sphincter ani function. Unfortunately, however, the article itself is not written well, being composed of long convoluted sentences and containing 79 often indecipherable figures. Difficult-to-understand articles were common to the publications of Denny-Brown, who became one of the most prominent neurologists of the twentieth century. In accord with our prior work explaining Denny-Brown and Robertson's earlier paper on micturition, we provide here what we hope is a clear explanation of the methods and results in their study on defaecation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73905/1/j.1463-1318.2004.00636.x.pd
The Gaussian graphical model in cross-sectional and time-series data
We discuss the Gaussian graphical model (GGM; an undirected network of
partial correlation coefficients) and detail its utility as an exploratory data
analysis tool. The GGM shows which variables predict one-another, allows for
sparse modeling of covariance structures, and may highlight potential causal
relationships between observed variables. We describe the utility in 3 kinds of
psychological datasets: datasets in which consecutive cases are assumed
independent (e.g., cross-sectional data), temporally ordered datasets (e.g., n
= 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In
time-series analysis, the GGM can be used to model the residual structure of a
vector-autoregression analysis (VAR), also termed graphical VAR. Two network
models can then be obtained: a temporal network and a contemporaneous network.
When analyzing data from multiple subjects, a GGM can also be formed on the
covariance structure of stationary means---the between-subjects network. We
discuss the interpretation of these models and propose estimation methods to
obtain these networks, which we implement in the R packages graphicalVAR and
mlVAR. The methods are showcased in two empirical examples, and simulation
studies on these methods are included in the supplementary materials.Comment: Accepted pending revision in Multivariate Behavioral Researc
Long-range temporal correlations of broadband EEG oscillations for depressed subjects following different hemispheric cerebral infarction
Abnormal long-range temporal correlation (LRTC) in EEG oscillation has been observed in several brain pathologies and mental disorders. This study examined the relationship between the LRTC of broadband EEG oscillation and depression following cerebral infarction with different hemispheric lesions to provide a novel insight into such depressive disorders. Resting EEGs of 16 channels in 18 depressed (9 left and 9 right lesions) and 21 non-depressed (11 left and 10 right lesions) subjects following cerebral infarction and 19 healthy control subjects were analysed by means of detrended fluctuation analysis, a quantitative measurement of LRTC. The difference among groups and the correlation between the severity of depression and LRTC in EEG oscillation were investigated by statistical analysis. The results showed that LRTC of broadband EEG oscillations in depressive subjects was still preserved but attenuated in right hemispheric lesion subjects especially in left pre-frontal and right inferior frontal and posterior temporal regions. Moreover, an association between the severity of psychiatric symptoms and the attenuation of the LRTC was found in frontal, central and temporal regions for stroke subjects with right lesions. A high discriminating ability of the LRTC in the frontal and central regions to distinguish depressive from non-depressive subjects suggested potential feasibility for LRTC as an assessment indicator for depression following right hemispheric cerebral infarction. Different performance of temporal correlation in depressed subjects following the two hemispheric lesions implied complex association between depression and stroke lesion location.</p
Multisite Investigation of Outcomes With Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention
OBJECTIVES:
This multicenter pragmatic investigation assessed outcomes following clinical implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention (PCI).
BACKGROUND:
CYP2C19 loss-of-function alleles impair clopidogrel effectiveness after PCI.
METHODS:
After clinical genotyping, each institution recommended alternative antiplatelet therapy (prasugrel, ticagrelor) in PCI patients with a loss-of-function allele. Major adverse cardiovascular events (defined as myocardial infarction, stroke, or death) within 12 months of PCI were compared between patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy. Risk was also compared between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy. Cox regression was performed, adjusting for group differences with inverse probability of treatment weights.
RESULTS:
Among 1,815 patients, 572 (31.5%) had a loss-of-function allele. The risk for major adverse cardiovascular events was significantly higher in patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy (23.4 vs. 8.7 per 100 patient-years; adjusted hazard ratio: 2.26; 95% confidence interval: 1.18 to 4.32; p = 0.013). Similar results were observed among 1,210 patients with acute coronary syndromes at the time of PCI (adjusted hazard ratio: 2.87; 95% confidence interval: 1.35 to 6.09; p = 0.013). There was no difference in major adverse cardiovascular events between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy (adjusted hazard ratio: 1.14; 95% confidence interval: 0.69 to 1.88; p = 0.60).
CONCLUSIONS:
These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value
Abnormal eye-head coordination in Parkinson's disease patients after administration of levodopa: a possible substrate of levodopa-induced dyskinesia.
- …
