599 research outputs found
Difficultés pour le demandeur de se faire assister d'un médecin-expert lors d'une action en responsabilité médicale
Implementation of Grover's Quantum Search Algorithm in a Scalable System
We report the implementation of Grover's quantum search algorithm in the
scalable system of trapped atomic ion quantum bits. Any one of four possible
states of a two-qubit memory is marked, and following a single query of the
search space, the marked element is successfully recovered with an average
probability of 60(2)%. This exceeds the performance of any possible classical
search algorithm, which can only succeed with a maximum average probability of
50%.Comment: 4 pages, 3 figures, updated error discussio
Phase Control of Trapped Ion Quantum Gates
There are several known schemes for entangling trapped ion quantum bits for
large-scale quantum computation. Most are based on an interaction between the
ions and external optical fields, coupling internal qubit states of
trapped-ions to their Coulomb-coupled motion. In this paper, we examine the
sensitivity of these motional gate schemes to phase fluctuations introduced
through noisy external control fields, and suggest techniques to suppress the
resulting phase decoherence.Comment: 21 pages 12 figure
T-junction ion trap array for two-dimensional ion shuttling, storage and manipulation
We demonstrate a two-dimensional 11-zone ion trap array, where individual
laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap
geometry consists of two linear rf ion trap sections that are joined at a 90
degree angle to form a T-shaped structure. We shuttle a single ion around the
corners of the T-junction and swap the positions of two crystallized ions using
voltage sequences designed to accommodate the nontrivial electrical potential
near the junction. Full two-dimensional control of multiple ions demonstrated
in this system may be crucial for the realization of scalable ion trap quantum
computation and the implementation of quantum networks.Comment: 3 pages, 5 figure
Entanglement of Trapped-Ion Clock States
A M{\o}lmer-S{\o}rensen entangling gate is realized for pairs of trapped
Cd ions using magnetic-field insensitive "clock" states and an
implementation offering reduced sensitivity to optical phase drifts. The gate
is used to generate the complete set of four entangled states, which are
reconstructed and evaluated with quantum-state tomography. An average
target-state fidelity of 0.79 is achieved, limited by available laser power and
technical noise. The tomographic reconstruction of entangled states
demonstrates universal quantum control of two ion-qubits, which through
multiplexing can provide a route to scalable architectures for trapped-ion
quantum computing.Comment: 6 pages, 5 figure
Wavelength-Scale Imaging of Trapped Ions using a Phase Fresnel lens
A microfabricated phase Fresnel lens was used to image ytterbium ions trapped
in a radio frequency Paul trap. The ions were laser cooled close to the Doppler
limit on the 369.5 nm transition, reducing the ion motion so that each ion
formed a near point source. By detecting the ion fluorescence on the same
transition, near diffraction limited imaging with spot sizes of below 440 nm
(FWHM) was achieved. This is the first demonstration of imaging trapped ions
with a resolution on the order of the transition wavelength.Comment: 8 pages, 3 figure
Quantum control of Sr in a miniature linear Paul trap
We report on the construction and characterization of an apparatus for
quantum information experiments using Sr ions. A miniature linear
radio-frequency (rf) Paul trap was designed and built. Trap frequencies above 1
MHz in all directions are obtained with 50 V on the trap end-caps and less than
1 W of rf power. We encode a quantum bit (qubit) in the two spin states of the
electronic ground-state of the ion. We constructed all the necessary
laser sources for laser cooling and full coherent manipulation of the ions'
external and internal states. Oscillating magnetic fields are used for coherent
spin rotations. High-fidelity readout as well as a coherence time of 2.5 ms are
demonstrated. Following resolved sideband cooling the average axial vibrational
quanta of a single trapped ion is and a heating rate of
ms is measured.Comment: 8 pages,9 figure
- …
