66 research outputs found
Prevalence and polymorphism of a mussel transmissible cancer in Europe
Transmissible cancers are parasitic malignant cell lineages that have acquired the ability to infect new hosts from the same species, or sometimes related species. First described in dogs and Tasmanian devils, transmissible cancers were later discovered in some marine bivalves affected by a leukaemia-like disease. In Mytilus mussels, two lineages of bivalve transmissible neoplasia (BTN) have been described to date (MtrBTN1 and MtrBTN2), both of which emerged in a Mytilus trossulus founder individual. Here, we performed extensive screening of genetic chimerism, a hallmark of transmissible cancer, by genotyping 106 single nucleotide polymorphisms of 5,907 European Mytilus mussels. Genetic analysis allowed us to simultaneously obtain the genotype of hosts – Mytilus edulis, M. galloprovincialis or hybrids – and the genotype of tumours of heavily infected individuals. In addition, a subset of 222 individuals were systematically genotyped and analysed by histology to screen for possible nontransmissible cancers. We detected MtrBTN2 at low prevalence in M. edulis, and also in M. galloprovincialis and hybrids although at a much lower prevalence. No MtrBTN1 or new BTN were found, but eight individuals with nontransmissible neoplasia were observed at a single polluted site on the same sampling date. We observed a diversity of MtrBTN2 genotypes that appeared more introgressed or more ancestral than MtrBTN1 and reference healthy M. trossulus individuals. The observed polymorphism is probably due to somatic null alleles caused by structural variations or point mutations in primer-binding sites leading to enhanced detection of the host alleles. Despite low prevalence, two sublineages divergent by 10% fixed somatic null alleles and one nonsynonymous mtCOI (mitochondrial cytochrome oxidase I) substitution are cospreading in the same geographical area, suggesting a complex diversification of MtrBTN2 since its emergence and host species shift
Immunological properties of Oxygen-Transport Proteins: Hemoglobin, Hemocyanin and Hemerythrin
In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus
invited speaker Session: ‘Antimicrobial peptides in the One Health Context & applications II’
International audienc
Crustacean Immunity : Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge
Field enhanced bacterial sample stacking in isotachophoresis using wide-bore capillaries
The isotachophoretic analysis of different bacterial strains was studied using capillaries with different internal diameters from 50 to 250um. Several injection modes were investigated and compared in order to improve the limit of detection of bacteria by capillary isotachophoresis. A system suitability test obtained from the separation voltage was developed to ensure reliable results. As expected, the use of wider bore capillaries improved the analytical sensitivity of the isotachophoretic method when compared to the 50um capillary. With the optimized conditions, the isotachophoretic method presented in this work allows the quantification of Erwinia carotovora (Gram negative bacteria) with a limit of detection as low as ~3000 cells mL−1. The proposed methodology does not require any additive in the electrolyte such a fluorescent or chromophoric dye to reach these limits of detection
Gene expression profile, protein production, and functions of cryptocyanin during the crustacean molt cycle
Antimicrobial histones and DNA traps in invertebrate immunity: evidences in Crassostrea gigas.
Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria
- …
