5 research outputs found
Semantics and Proof Theory of the Epsilon Calculus
The epsilon operator is a term-forming operator which replaces quantifiers in
ordinary predicate logic. The application of this undervalued formalism has
been hampered by the absence of well-behaved proof systems on the one hand, and
accessible presentations of its theory on the other. One significant early
result for the original axiomatic proof system for the epsilon-calculus is the
first epsilon theorem, for which a proof is sketched. The system itself is
discussed, also relative to possible semantic interpretations. The problems
facing the development of proof-theoretically well-behaved systems are
outlined.Comment: arXiv admin note: substantial text overlap with arXiv:1411.362
The Epsilon Calculus and Herbrand Complexity
Hilbert's epsilon-calculus is based on an extension of the language of
predicate logic by a term-forming operator . Two fundamental
results about the epsilon-calculus, the first and second epsilon theorem, play
a role similar to that which the cut-elimination theorem plays in sequent
calculus. In particular, Herbrand's Theorem is a consequence of the epsilon
theorems. The paper investigates the epsilon theorems and the complexity of the
elimination procedure underlying their proof, as well as the length of Herbrand
disjunctions of existential theorems obtained by this elimination procedure.Comment: 23 p
