1,655 research outputs found
The contribution of 211 particles to the mechanical reinforcement mechanism of 123 superconducting single domains
Hardness and fracture toughness of Dy-123 single-domains were studied by
Vickers micro-indentation. A significant anisotropy of the mechanical
properties was observed. Hardness tests give higher values when performed in
(001) planes rather than in planes parallel to the c-axis. Moreover cracks
pattern around the indentation follows preferential orientation in planes
parallel to the c-axis whereas a classical ''four-cracks'' pattern is observed
in the (001) planes. It has been possible to show the crucial role played by
the 211-particles in the deviating mechanism of cracks and the relevance of the
211-particle distribution high homogeneity in the material.Comment: 14 pages, including 5 figures and 1 Table. submitted to Supercond.
Sci. Techno
Prediction and control under uncertainty: Outcomes in angel investing
The article of record as published may be found at http://dx.doi.org/10.1016/j.jbusvent.2007.11.004Venture investing plays an important role in entrepreneurship not only because financial resources are important to new
ventures, but also because early investors help shape the ventures' managerial and strategic destiny. In this study of 121 angel
investors who had made 1038 new venture investments, we empirically investigate angel investors' differential use of predictive
versus non-predictive control strategies. We show how the use of these strategies affects the outcomes of angel investors. Results
show that angels who emphasize prediction make significantly larger venture investments, while those who emphasize nonpredictive
control experience a reduction in investment failures without a reduction in their number of successes
Current percolation and anisotropy in polycrystalline MgB
The influence of anisotropy on the transport current in MgB
polycrystalline bulk samples and wires is discussed. A model for the critical
current density is proposed, which is based on anisotropic London theory, grain
boundary pinning and percolation theory. The calculated currents agree
convincingly with experimental data and the fit parameters, especially the
anisotropy, obtained from percolation theory agree with experiment or
theoretical predictions.Comment: 5 pages, accepted for publication in Physical Review Letters
(http://prl.aps.org/
Effectual versus predictive logics in entrepreneurial decision-making: Differences between experts and novices
The article of record as published may be found at http://dx.doi.org/10.1016/j.jbusvent.2008.02.002In support of theory, this study demonstrates that entrepreneurial experts frame decisions using an “effectual” logic (identify more
potential markets, focus more on building the venture as a whole, pay less attention to predictive information, worry more about making
do with resources on hand to invest only what they could afford to lose, and emphasize stitching together networks of partnerships); while
novices use a “predictive frame” and tend to “go by the textbook.”We asked 27 expert entrepreneurs and 37MBAstudents to think aloud
continuously as they solved typical decision-making problems in creating a new venture. Transcriptions were analyzed using methods
from cognitive science. Results showed that expert entrepreneurs framed problems in a dramatically different way than MBA students
Fast diffusion of a Lennard-Jones cluster on a crystalline surface
We present a Molecular Dynamics study of large Lennard-Jones clusters
evolving on a crystalline surface. The static and the dynamic properties of the
cluster are described. We find that large clusters can diffuse rapidly, as
experimentally observed. The role of the mismatch between the lattice
parameters of the cluster and the substrate is emphasized to explain the
diffusion of the cluster. This diffusion can be described as a Brownian motion
induced by the vibrationnal coupling to the substrate, a mechanism that has not
been previously considered for cluster diffusion.Comment: latex, 5 pages with figure
Core pinning by intragranular nanoprecipitates in polycrystalline MgCNi_3
The nanostructure and magnetic properties of polycrystalline MgCNi_3 were
studied by x-ray diffraction, electron microscopy, and vibrating sample
magnetometry. While the bulk flux-pinning force curve F_p(H) indicates the
expected grain-boundary pinning mechanism just below T_c = 7.2 K, a systematic
change to pinning by a nanometer-scale distribution of core pinning sites is
indicated by a shift of F_p(H) with decreasing temperature. The lack of scaling
of F_p(H) suggests the presence of 10 to 20% of nonsuperconducting regions
inside the grains, which are smaller than the diameter of fluxon cores 2xi at
high temperature and become effective with decreasing temperature when xi(T)
approaches the nanostructural scale. Transmission electron microscopy revealed
cubic and graphite nanoprecipitates with 2 to 5 nm size, consistent with the
above hypothesis since xi(0) = 6 nm. High critical current densities, more than
10^6 A/cm^2 at 1 T and 4.2 K, were obtained for grain colonies separated by
carbon. Dirty-limit behavior seen in previous studies may be tied to electron
scattering by the precipitates, indicating the possibility that strong core
pinning might be combined with a technologically useful upper critical field if
versions of MgCNi_3 with higher T_c can be found.Comment: 5 pages, 6 figures, submitted to PR
Influence of nonlocal electrodynamics on the anisotropic vortex pinning in
We have studied the pinning force density Fp of YNi_2B_2C superconductors for
various field orientations. We observe anisotropies both between the c-axis and
the basal plane and within the plane, that cannot be explained by usual mass
anisotropy. For magnetic field , the reorientation structural
transition in the vortex lattice due to nonlocality, which occurs at a field
, manifests itself as a kink in Fp(H). When , Fp is
much larger and has a quite different H dependence, indicating that other
pinning mechanisms are present. In this case the signature of nonlocal effects
is the presence of a fourfold periodicity of Fp within the basal plane.Comment: 4 pages, 3 figure
Antecedents and consequences of effectuation and causation in the international new venture creation process
The selection of the entry mode in an international market is of key importance for the venture. A process-based perspective on entry mode selection can add to the International Business and International Entrepreneurship literature. Framing the international market entry as an entrepreneurial process, this paper analyzes the antecedents and consequences of causation and effectuation in the entry mode selection. For the analysis, regression-based techniques were used on a sample of 65 gazelles. The results indicate that experienced entrepreneurs tend to apply effectuation rather than causation, while uncertainty does not have a systematic influence. Entrepreneurs using causation-based international new venture creation processes tend to engage in export-type entry modes, while effectuation-based international new venture creation processes do not predetermine the entry mod
High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications
Superconducting technology provides most sensitive field detectors, promising
implementations of qubits and high field magnets for medical imaging and for
most powerful particle accelerators. Thus, with the discovery of new
superconducting materials, such as the iron pnictides, exploring their
potential for applications is one of the foremost tasks. Even if the critical
temperature Tc is high, intrinsic electronic properties might render
applications rather difficult, particularly if extreme electronic anisotropy
prevents effective pinning of vortices and thus severely limits the critical
current density, a problem well known for cuprates. While many questions
concerning microscopic electronic properties of the iron pnictides have been
successfully addressed and estimates point to a very high upper critical field,
their application potential is less clarified. Thus we focus here on the
critical currents, their anisotropy and the onset of electrical dissipation in
high magnetic fields up to 65 T. Our detailed study of the transport properties
of optimally doped SmFeAs(O,F) single crystals reveals a promising combination
of high (>2 x 10^6 A/cm^2) and nearly isotropic critical current densities
along all crystal directions. This favorable intragrain current transport in
SmFeAs(O,F), which shows the highest Tc of 54 K at ambient pressure, is a
crucial requirement for possible applications. Essential in these experiments
are 4-probe measurements on Focused Ion Beam (FIB) cut single crystals with
sub-\mu\m^2 cross-section, with current along and perpendicular to the
crystallographic c-axis and very good signal-to-noise ratio (SNR) in pulsed
magnetic fields. The pinning forces have been characterized by scaling the
magnetically measured "peak effect"
Pleiotropic functions of the tumor- and metastasis-suppressing Matrix Metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice
Matrix metalloproteinase-8 (MMP-8; neutrophil collagenase) is an important regulator of innate immunity which has onco-suppressive actions in numerous tumor types
- …
