449 research outputs found
Determining particle density using known material Hugeniot curves
A method is detailed to determine the density of particles wherein the closing velocity is known between the impacting particles and a plate of known material. Either the shock wave velocity or the material velocity produced in the plate upon impact by an unknown material particle is determined and compared with the corresponding shock wave or material velocity that would by produced by different known material particles having the same closing velocity upon impact with the plate. The unknown material particle density is derived by obtaining a coincidence of the shock wave velocity or material velocity conditions initially produced upon impact between the known material plate and one of the different material particles and from the fact that shock wave velocity and material velocity are ordered on the impacting particle material density alone
Removal of spacecraft-surface particulate contaminants by simulated micrometeoroid impacts
A series of hypervelocity impacts has been conducted in an exploding lithium-wire accelerator to examine with a far-field holographic system the removal of particulate contaminants from external spacecraft surfaces subjected to micrometeoroid bombardment. The impacting projectiles used to simulate the micrometeoroids were glass spheres nominally 37 microns in diameter, having velocities between 4 and 17 km/sec. The particulates were glass spheres nominally 25, 50, and 75 microns in diameter which were placed on aluminum targets. For these test, particulates detached had velocities that were log-normally distributed. The significance of the log-normal behavior of the ejected-particulate velocity distribution is that the geometric mean velocity and the geometric standard deviation are the only two parameters needed to model completely the process of particles removed or ejected from a spacecraft surface by a micrometeoroid impact
Cancellation of vorticity in steady-state non-isentropic flows of complex fluids
In steady-state non-isentropic flows of perfect fluids there is always
thermodynamic generation of vorticity when the difference between the product
of the temperature with the gradient of the entropy and the gradient of total
enthalpy is different from zero. We note that this property does not hold in
general for complex fluids for which the prominent influence of the material
substructure on the gross motion may cancel the thermodynamic vorticity. We
indicate the explicit condition for this cancellation (topological transition
from vortex sheet to shear flow) for general complex fluids described by
coarse-grained order parameters and extended forms of Ginzburg-Landau energies.
As a prominent sample case we treat first Korteweg's fluid, used commonly as a
model of capillary motion or phase transitions characterized by diffused
interfaces. Then we discuss general complex fluids. We show also that, when the
entropy and the total enthalpy are constant throughout the flow, vorticity may
be generated by the inhomogeneous character of the distribution of material
substructures, and indicate the explicit condition for such a generation. We
discuss also some aspects of unsteady motion and show that in two-dimensional
flows of incompressible perfect complex fluids the vorticity is in general not
conserved, due to a mechanism of transfer of energy between different levels.Comment: 12 page
Wandering behaviour prevents inter and intra oceanic speciation in a coastal pelagic fish
Small pelagic fishes have the ability to disperse over long distances and may present complex evolutionary histories. Here, Old World Anchovies (OWA) were used as a model system to understand genetic patterns and connectivity of fish between the Atlantic and Pacific basins. We surveyed 16 locations worldwide using mtDNA and 8 microsatellite loci for genetic parameters, and mtDNA (cyt b; 16S) and nuclear (RAG1; RAG2) regions for dating major lineage-splitting events within Engraulidae family. The OWA genetic divergences (0-0.4%) are compatible with intra-specific divergence, showing evidence of both ancient and contemporary admixture between the Pacific and Atlantic populations, enhanced by high asymmetrical migration from the Pacific to the Atlantic. The estimated divergence between Atlantic and Pacific anchovies (0.67 [0.53-0.80] Ma) matches a severe drop of sea temperature during the Gunz glacial stage of the Pleistocene. Our results support an alternative evolutionary scenario for the OWA, suggesting a coastal migration along south Asia, Middle East and eastern Africa continental platforms, followed by the colonization of the Atlantic via the Cape of the Good Hope.Portuguese Foundation for Science & Technology (FCT) [SFRH/BD/36600/2007]; FCT [UID/MAR/04292/2013, SFRH/BPD/65830/2009]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio
The functional relevance of olfactory marker protein in the vertebrate olfactory system: a never-ending story
Olfactory marker protein (OMP) was first described as a protein expressed in olfactory receptor neurons (ORNs) in the nasal cavity. In particular, OMP, a small cytoplasmic protein, marks mature ORNs and is also expressed in the neurons of other nasal chemosensory systems: the vomeronasal organ, the septal organ of Masera, and the Grueneberg ganglion. While its expression pattern was more easily established, OMP’s function remained relatively vague. To date, most of the work to understand OMP’s role has been done using mice lacking OMP. This mostly phenomenological work has shown that OMP is involved in sharpening the odorant response profile and in quickening odorant response kinetics of ORNs and that it contributes to targeting of ORN axons to the olfactory bulb to refine the glomerular response map. Increasing evidence shows that OMP acts at the early stages of olfactory transduction by modulating the kinetics of cAMP, the second messenger of olfactory transduction. However, how this occurs at a mechanistic level is not understood, and it might also not be the only mechanism underlying all the changes observed in mice lacking OMP. Recently, OMP has been detected outside the nose, including the brain and other organs. Although no obvious logic has become apparent regarding the underlying commonality between nasal and extranasal expression of OMP, a broader approach to diverse cellular systems might help unravel OMP’s functions and mechanisms of action inside and outside the nose
Modeling resilience and sustainability in ancient agricultural systems
The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past
Anthropogenic disturbance and evolutionary parameters: a lemon shark population experiencing habitat loss
The level of genetic variation in natural populations influences evolutionary potential, and may therefore influence responses to selection in the face of future environmental changes. By combining long-term monitoring of marked individuals with genetic pedigree reconstruction, we assessed whether habitat loss influenced genetic variation in a lemon shark (Negaprion brevirostris) population at an isolated nursery lagoon (Bimini, Bahamas). We also tracked changes in the strength and direction of natural selection. Contrary to initial expectations, we found that after the habitat loss neutral genetic variation increased, as did additive genetic variance for juvenile morphological traits (body length and mass). We hypothesize that these effects might result from philopatric behavior in females coupled with a possible influx of male genotypes from other nursery sites. We also found changes in the strength of selection on morphological traits, which weakened considerably after the disturbance; habitat loss therefore changed the phenotypes favored by natural selection. Because such human-induced shifts in the adaptive landscape may be common, we suggest that conservation biologists should not simply focus on neutral genetic variation per se, but also on assessing and preserving evolutionary parameters, such as additive genetic variation and selection
Using integrative taxonomy to distinguish cryptic halfbeak species and interpret distribution patterns, fisheries landings, and speciation
Context. Species classification disputes can be resolved using integrative taxonomy, which
involves the use of both phenotypic and genetic information to determine species boundaries.
Aims. Our aim was to clarify species boundaries of two commercially important cryptic species
of halfbeak (Hemiramphidae), whose distributions overlap in south-eastern Australia, and assist
fisheries management. Methods. We applied an integrative taxonomic approach to clarify
species boundaries and assist fisheries management. Key results. Mitochondrial DNA and
morphological data exhibited significant differences between the two species. The low level of
mitochondrial DNA divergence, coupled with the lack of difference in the nuclear DNA,
suggests that these species diverged relatively recently (c. 500 000 years ago) when compared
with other species within the Hyporhamphus genus (>2.4 million years ago). Genetic differences
between the species were accompanied by differences in modal gill raker counts, mean upper-
jaw and preorbital length, and otolith shape. Conclusions. On the basis of these genetic and
morphological differences, as well as the lack of morphological intergradation between species
along the overlapping boundaries of their geographical distributions, we propose that
Hyporhamphus australis and Hyporhamphus melanochir remain valid species. Implications. This
study has illustrated the need for an integrative taxonomic approach when assessing species
boundaries and has provided a methodological framework for studying other cryptic fish species
in a management context
- …
