1,972 research outputs found
Kinetics in one-dimensional lattice gas and Ising models from time-dependent density functional theory
Time-dependent density functional theory, proposed recently in the context of
atomic diffusion and non-equilibrium processes in solids, is tested against
Monte Carlo simulation. In order to assess the basic approximation of that
theory, the representation of non-equilibrium states by a local equilibrium
distribution function, we focus on one-dimensional lattice models, where all
equilibrium properties can be worked exactly from the known free energy as a
functional of the density. This functional determines the thermodynamic driving
forces away from equilibrium. In our studies of the interfacial kinetics of
atomic hopping and spin relaxation, we find excellent agreement with
simulations, suggesting that the method is useful also for treating more
complex problems.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
Dynamics of Viscoplastic Deformation in Amorphous Solids
We propose a dynamical theory of low-temperature shear deformation in
amorphous solids. Our analysis is based on molecular-dynamics simulations of a
two-dimensional, two-component noncrystalline system. These numerical
simulations reveal behavior typical of metallic glasses and other viscoplastic
materials, specifically, reversible elastic deformation at small applied
stresses, irreversible plastic deformation at larger stresses, a stress
threshold above which unbounded plastic flow occurs, and a strong dependence of
the state of the system on the history of past deformations. Microscopic
observations suggest that a dynamically complete description of the macroscopic
state of this deforming body requires specifying, in addition to stress and
strain, certain average features of a population of two-state shear
transformation zones. Our introduction of these new state variables into the
constitutive equations for this system is an extension of earlier models of
creep in metallic glasses. In the treatment presented here, we specialize to
temperatures far below the glass transition, and postulate that irreversible
motions are governed by local entropic fluctuations in the volumes of the
transformation zones. In most respects, our theory is in good quantitative
agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure
Charge-density Waves Survive the Pauli Paramagnetic Limit
Measurements of the resistance of single crystals of (Per)Au(mnt)
have been made at magnetic fields of up to 45 T, exceeding the Pauli
paramagnetic limit of T. The continued presence of
non-linear charge-density wave electrodynamics at T unambiguously
establishes the survival of the charge-density wave state above the Pauli
paramagnetic limit, and the likely emergence of an inhomogeneous phase
analogous to that anticipated to occur in superconductors.Comment: 4 pages, three figure
Acoustic radiation controls friction: Evidence from a spring-block experiment
Brittle failures of materials and earthquakes generate acoustic/seismic waves
which lead to radiation damping feedbacks that should be introduced in the
dynamical equations of crack motion. We present direct experimental evidence of
the importance of this feedback on the acoustic noise spectrum of
well-controlled spring-block sliding experiments performed on a variety of
smooth surfaces. The full noise spectrum is quantitatively explained by a
simple noisy harmonic oscillator equation with a radiation damping force
proportional to the derivative of the acceleration, added to a standard viscous
term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR
Teaching old NCATs new tricks: using non-canonical amino acid tagging to study neuronal plasticity
The non-canonical amino acid labeling techniques BONCAT (bioorthogonal non-canonical amino acid tagging) and FUNCAT (fluorescent non-canonical amino acid tagging) enable the specific identification and visualization of newly synthesized proteins. Recently, these techniques have been applied to neuronal systems to elucidate protein synthesis dynamics during plasticity, identify stimulation-induced proteomes and subproteomes and to investigate local protein synthesis in specific subcellular compartments. The next generation of tools and applications, reviewed here, includes the development of new tags, the quantitative identification of newly synthesized proteins, the application of NCAT to whole animals, and the ability to genetically restrict NCAT labeling. These techniques will enable not only improved detection but also allow new scientific questions to be tackled
- …
