260 research outputs found
On the chromatic roots of generalized theta graphs
The generalized theta graph \Theta_{s_1,...,s_k} consists of a pair of
endvertices joined by k internally disjoint paths of lengths s_1,...,s_k \ge 1.
We prove that the roots of the chromatic polynomial $pi(\Theta_{s_1,...,s_k},z)
of a k-ary generalized theta graph all lie in the disc |z-1| \le [1 + o(1)]
k/\log k, uniformly in the path lengths s_i. Moreover, we prove that
\Theta_{2,...,2} \simeq K_{2,k} indeed has a chromatic root of modulus [1 +
o(1)] k/\log k. Finally, for k \le 8 we prove that the generalized theta graph
with a chromatic root that maximizes |z-1| is the one with all path lengths
equal to 2; we conjecture that this holds for all k.Comment: LaTex2e, 25 pages including 2 figure
World-line Quantisation of a Reciprocally Invariant System
We present the world-line quantisation of a system invariant under the
symmetries of reciprocal relativity (pseudo-unitary transformations on ``phase
space coordinates" which preserve the Minkowski
metric and the symplectic form, and global shifts in these coordinates,
together with coordinate dependent transformations of an additional compact
phase coordinate, ). The action is that of free motion over the
corresponding Weyl-Heisenberg group. Imposition of the first class constraint,
the generator of local time reparametrisations, on physical states enforces
identification of the world-line cosmological constant with a fixed value of
the quadratic Casimir of the quaplectic symmetry group , the semi-direct product of the pseudo-unitary group with
the Weyl-Heisenberg group (the central extension of the global translation
group, with central extension associated to the phase variable ).
The spacetime spectrum of physical states is identified. Even though for an
appropriate range of values the restriction enforced by the cosmological
constant projects out negative norm states from the physical spectrum, leaving
over spin zero states only, the mass-squared spectrum is continuous over the
entire real line and thus includes a tachyonic branch as well
Interconnected reproductive and vegetative remains of Populus (Salicaceae) from the middle Eocene Green River Formation, northeastern Utah
A new specimen from the Middle Eocene Evacuation Creek Member of the Green River Formation in northeastern Utah shows a twig with several leaves of Populus wilmattae Crockrell and a fruiting raceme attache. This specimen establishes for the first time the type of fruits borne by P. wilmattae and provides additional characters with which to assess its taxonomic and evolutionary status. An associated seed shows attached placental hairs like those of extant species of Populus. The Green River fossil differs from extant Populus species in having basically palmate leaf venation and in bearing its fruiting axis on a young twig. In other aspects, the fossil species is remarkably similar to the extant species Populus mexicana
The pangenome of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV)
The alphabaculovirusAnticarsia gemmatalismultiple nucleopolyhedrovirus (AgMNPV) is the world’s most successful viral bioinsecticide. Through the 1980s and 1990s, this virus was extensively used for biological control of populations ofAnticarsia gemmatalis(Velvetbean caterpillar) in soybean crops. During this period, genetic studies identified several variable loci in the AgMNPV; however, most of them were not characterized at the sequence level. In this study we report a full genome comparison among 17 wild-type isolates of AgMNPV. We found the pangenome of this virus to contain at least 167 hypothetical genes, 151 of which are shared by all genomes. The genebro-athat might be involved in host specificity and carrying transporter is absent in some genomes, and new hypothetical genes were observed. Among these genes there is a uniquernf12-likegene, probably implicated in ubiquitination. Events of gene fission and fusion are common, as four genes have been observed as single or split open reading frames. Gains and losses of genomic fragments (from 20 to 900 bp) are observed within tandem repeats, such as in eight direct repeats and four homologous regions. Most AgMNPV genes present low nucleotide diversity, and variable genes are mainly located in a locus known to evolve through homologous recombination. The evolution of AgMNPV is mainly driven by small indels, substitutions, gain and loss of nucleotide stretches or entire coding sequences. These variations may cause relevant phenotypic alterations, which probably affect the infectivity of AgMNPV. This work provides novel information on genomic evolution of the AgMNPV in particular and of baculoviruses in general
Genetic characterization of Yug Bogdanovac virus
We present pyrosequencing data and phylogenetic analysis for the full genome of Yug Bogdanovac virus (YBV), a member of the Vesicular stomatitis virus serogroup of the Rhabdoviridae isolated from a pool of Phlebotomus perfiliewi sandflies collected in Serbia in 1976. YBV shows very low nucleotide identities to other members of the Vesicular stomatitis virus serogroup and does not contain a reading frame for C′/C proteins
Development of a Flow-Trough Microarray based Reverse Transcriptase Multiplex Ligation-Dependent Probe Amplification Assay for the Detection of European Bunyaviruses
It is suspected that apart from tick-borne encephalitis virus several additional European Arboviruses such as the sandfly borne Toscana virus, sandfly fever Sicilian virus and sandfly fever Naples virus, mosquito-borne Tahyna virus, Inkoo virus, Batai virus and tick-borne Uukuniemi virus cause aseptic meningo-encephalitis or febrile disease in Europe. Currently, the microarray technology is developing rapidly and there are many efforts to apply it to infectious diseases diagnostics. In order to arrive at an assay system useful for high throughput analysis of samples from aseptic meningo-encephalitis cases the authors developed a combined multiplex ligation-dependent probe amplification and flow-through microarray assay for the detection of European Bunyaviruses. These results show that this combined assay indeed is highly sensitive, and specific for the accurate detection of multiple viruses
Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum
Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables
Mesozoic mass extinctions and angiosperm radiation: does the molecular clock tell something new?
Angiosperms evolved rapidly in the late Mesozoic. Data from the genetic-based approach called ’molecular clock’
permit an evaluation of the radiation of flowering plants through geological time and of the possible influences of Me -sozoic mass extinctions. A total of 261 divergence ages of angiosperm families are considered. The radiation of flowe -ring plants peaked in the Albian, early Campanian, and Maastrichtian. From the three late Mesozoic mass extinctions
(Jurassic/Cretaceous, Cenomanian/Turonian, and Cretaceous/Palaeogene), only the Cretaceous/Palaeogene event
coincided with a significant, abrupt, and long-term decline in angiosperm radiation. If their link will be further pro -ven, this means that global-scale environmental perturbation precluded from many innovations in the development of
plants. This decline was, however, not unprecedented in the history of the angiosperms. The implication of data from
the molecular clock for evolutionary reconstructions is limited, primarily because this approach deals with only extant
lineages
Combining cerebrospinal fluid and PI‐2620 tau‐PET for biomarker‐based stratification of Alzheimer's disease and 4R‐tauopathies
INTRODUCTION
Recent advances in biomarker research have improved the diagnosis and monitoring of Alzheimer's disease (AD), but in vivo biomarker-based workflows to assess 4R-tauopathy (4RT) patients are currently missing. We suggest a novel biomarker-based algorithm to characterize AD and 4RTs.
METHODS
We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau181 and t-tau) and 18F-PI-2620 tau-positron emission tomography (PET) in patients with AD (n = 64), clinically suspected 4RTs (progressive supranuclear palsy or corticobasal syndrome, n = 82) and healthy controls (n = 19).
RESULTS
Elevated CSF p-tau181 and cortical 18F-PI-2620 binding was characteristic for AD while normal CSF p-tau181 with elevated subcortical 18F-PI-2620 binding was characteristic for 4RTs. 18F-PI-2620-assessed posterior cortical hypoperfusion could be used as an additional neuronal injury biomarker in AD.
DISCUSSION
The specific combination of CSF markers and 18F-PI-2620 tau-PET in disease-specific regions facilitates the biomarker-guided stratification of AD and 4RTs. This has implications for biomarker-aided diagnostic workflows and the advancement in clinical trials.
Highlights
Novel biomarker-based algorithm for differentiating AD and 4R-tauopathies.
A combination of CSF p-tau181 and 18F-PI-2620 discriminates AD versus 4R tauopathies.
Hypoperfusion serves as an additional neuronal injury biomarker in AD
- …
