10,762 research outputs found
Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)
A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft
The baryon octet magnetic moments to all orders in flavor breaking; an application to the problem of the strangeness in the nucleon
Using the general QCD parametrization (GP) we display the magnetic moments of
the octet baryons including all flavor breaking terms to any order. The
hierarchy of the GP parameters allows to estimate a parameter related
to the quark loops contribution of the proton magnetic moment; its order of
magnitude is predicted to be inside a comparatively small interval including
the value given recently by Leinweber et al. by a lattice QCD calculationComment: (13 pages- version accepted for publication Phys.Rev.D. Note added in
last section, 2 references adde
Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy and Validation
The surface characteristics of a machined product strongly influence its functional performance. During machining, the grain size of the surface is frequently modified, thus the properties of the machined surface are different to that of the original bulk material. These changes must be taken into account when modeling the surface integrity effects resulting from machining. In the present work, grain size changes induced during turning of AA 7075-T651 (160 HV) alloy are modeled using the Finite Element (FE) method and a user subroutine is implemented in the FE code to describe the microstructural change and to simulate the dynamic recrystallization, with the consequent formation of new grains. In particular, a procedure utilizing the Zener-Hollomon and Hall-Petch equations is implemented in the user subroutine to predict the evolution of the material grain size and the surface hardness when varying the cutting speeds (180 - 720 m/min) and tool nose radii (0.4 - 1.2 mm). All simulations were performed for dry cutting conditions using uncoated carbide tools. The effectiveness of the proposed FE model was demonstrated through its capability to predict grain size evolution and hardness modification from the bulk material to machined surface. The model is validated by comparing the predicted results with those experimentally observed
POTENTIAL EFFECTS OF SUBSIDIZED LIVESTOCK INSURANCE ON LIVESTOCK PRODUCTION
Recent legislation has cleared the way for subsidized livestock price insurance. Such programs could increase production. Expected feeder cattle prices with and without subsidized insurance will be analyzed using E-V and Stochastic Dominance. Results will highlight the potential effects of the program on marketing risk and production decisions.Livestock Production/Industries, Risk and Uncertainty,
Buy High Sell Low: Redefining Bean Counting in the Coffee Industry for a Sustainable Future
Charles Manz returns to the JVBL providing ‒ together with several fellow researchers/writers ‒ a case study of a socially responsible business within the coffee industry. Familiar CSR concepts are examined such as Fair Trade and sustainability which foster parity in dealing with buyers while maintaining product quality and reasonable income. The practices of Dean’s Beans, a progressive coffee organization, are examined as a notable demonstration of how a business can fiscally succeed while maintaining a commitment to the triple-bottom-line considerations of people, planet, and profits
Recommended from our members
Research Synthesis for the California Zero Traffic Fatalities Task Force
This research synthesis consists of a set of white papers that jointly provide a review of research on the current practicefor setting speed limits and future opportunities to improve roadway safety. This synthesis was developed to inform thework of the Zero Traffic Fatalities Task Force, which was formed in 2019 by the California State Transportation Agencyin response to California Assembly Bill 2363 (Friedman). The statutory goal of the Task Force is to develop a structured,coordinated process for early engagement of all parties to develop policies to reduce traffic fatalities to zero. Thisreport addresses the following critical issues related to the work of the Task Force: (i) the relationship between trafficspeed and safety; (ii) lack of empirical justification for continuing to use the 85th percentile rule; (iii) why we need toreconsider current speed limit setting practices; (iv) promising alternatives to current methods of setting speed limits;and (v) improving road designs to increase road user safety
Monte Carlo Simulation of Ising Models with Dipole Interaction
Recently, a new memory effect was found in the metamagnetic domain structure
of the diluted Ising antiferromagnet by domain imaging
with Faraday contrast. Essential for this effect is the dipole interaction. We
simulate the low temperature behavior of diluted Ising-antiferromagnets by a
Monte Carlo simulation considering long range interaction. The metamagnetic
domain structure occurring due to the dipole interaction is investigated by
graphical representation. In the model considered the antiferromagnetic state
is stable for an external magnetic field smaller than a lower boundary
while for fields larger than an upper boundary the system is in the
saturated paramagnetic phase, where the spins are ferromagnetically polarized.
For magnetic fields in between these two boundaries a mixed phase occurs
consisting of ferromagnetic domains in an antiferromagnetic background. The
position of these ferromagnetic domains is stored in the system: after a cycle
in which the field is first removed and afterwards applied again the domains
reappear at their original positions. The reason for this effect can be found
in the frozen antiferromagnetic domain state which occurs after removing the
field.Comment: Latex, 10 pages; 3 postsript-figures, compressed tar-file, uuencoded,
report 10109
High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests.
During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr. High-severity fire in the Sierra Nevada resulted in a long-term (44 +yr) decrease (>50%, P < 0.05) in soil extracellular enzyme activities, basal microbial respiration (56-72%, P < 0.05), and organic carbon (>50%, P < 0.05) in the upper 5 cm compared to sites that had not been burned for at least 115 yr. However, nitrogen (N) processes were only affected in the most recent fire site (4 yr post-fire). Net nitrification increased by over 600% in the most recent fire site (P < 0.001), but returned to similar levels as the unburned control in the 13-yr site. Contrary to previous studies, we did not find a consistent effect of plant cover type on soil biogeochemical processes in mid-successional (10-50 yr) forest soils. Rather, the 44-yr reduction in soil organic carbon (C) quantity correlated positively with dampened C cycling processes. Our results show the drastic and long-term implication of ecologically novel, high-severity fire on soil biogeochemistry and underscore the need for long-term fire ecological experiments
Temperature-(208-318 K) and pressure-(18-696Torr) dependent rate coefficients for the reaction between OH and HNO3
Abstract. Rate coefficients (k5) for the title reaction were ob- tained using pulsed laser photolytic generation of OH cou- pled to its detection by laser-induced fluorescence (PLP– LIF). More than 80 determinations of k5 were carried out in nitrogen or air bath gas at various temperatures and pres- sures. The accuracy of the rate coefficients obtained was en- hanced by in situ measurement of the concentrations of both HNO3 reactant and NO2 impurity. The rate coefficients show both temperature and pressure dependence with a rapid in- crease in k5 at low temperatures. The pressure dependence was weak at room temperature but increased significantly at low temperatures. The entire data set was combined with se- lected literature values of k5 and parameterised using a com- bination of pressure-dependent and -independent terms to give an expression that covers the relevant pressure and tem- perature range for the atmosphere. A global model, using the new parameterisation for k 5 rather than those presently ac- cepted, indicated small but significant latitude- and altitude- dependent changes in the HNO 3 / NO x ratio of between − 6 and + 6 %. Effective HNO 3 absorption cross sections (184.95 and 213.86 nm, units of cm 2 molecule − 1 ) were ob- tained as part of this work: σ 213 . 86 = 4.52 + 0 . 23 − 0 . 12 × 10 − 19 and σ 184 . 95 = 1.61 + 0 . 08 − 0 . 04 × 10 − 17
- …
