33 research outputs found
CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods
Background:
The Critical Assessment of Genome Interpretation (CAGI) aims to advance the state-of-the-art for computational prediction of genetic variant impact, particularly where relevant to disease. The five complete editions of the CAGI community experiment comprised 50 challenges, in which participants made blind predictions of phenotypes from genetic data, and these were evaluated by independent assessors.
//
Results:
Performance was particularly strong for clinical pathogenic variants, including some difficult-to-diagnose cases, and extends to interpretation of cancer-related variants. Missense variant interpretation methods were able to estimate biochemical effects with increasing accuracy. Assessment of methods for regulatory variants and complex trait disease risk was less definitive and indicates performance potentially suitable for auxiliary use in the clinic.
//
Conclusions:
Results show that while current methods are imperfect, they have major utility for research and clinical applications. Emerging methods and increasingly large, robust datasets for training and assessment promise further progress ahead
Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae.
Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae
Upc2p and Ecm22p, Dual Regulators of Sterol Biosynthesis in Saccharomyces cerevisiae
Sterol levels affect the expression of many genes in yeast and humans. We found that the paralogous transcription factors Upc2p and Ecm22p of yeast were sterol regulatory element (SRE) binding proteins (SREBPs) responsible for regulating transcription of the sterol biosynthetic genes ERG2 and ERG3. We defined a 7-bp SRE common to these and other genes, including many genes involved in sterol biosynthesis. Upc2p and Ecm22p activated ERG2 expression by binding directly to this element in the ERG2 promoter. Upc2p and Ecm22p may thereby coordinately regulate genes involved in sterol homeostasis in yeast. Ecm22p and Upc2p are members of the fungus-specific Zn[2]-Cys[6] binuclear cluster family of transcription factors and share no homology to the analogous proteins, SREBPs, that are responsible for transcriptional regulation by sterols in humans. These results suggest that Saccharomyces cerevisiae and human cells regulate sterol synthesis by different mechanisms
