3,498 research outputs found
Practical quantum realization of the ampere from the electron charge
One major change of the future revision of the International System of Units
(SI) is a new definition of the ampere based on the elementary charge \emph{e}.
Replacing the former definition based on Amp\`ere's force law will allow one to
fully benefit from quantum physics to realize the ampere. However, a quantum
realization of the ampere from \emph{e}, accurate to within in
relative value and fulfilling traceability needs, is still missing despite many
efforts have been spent for the development of single-electron tunneling
devices. Starting again with Ohm's law, applied here in a quantum circuit
combining the quantum Hall resistance and Josephson voltage standards with a
superconducting cryogenic amplifier, we report on a practical and universal
programmable quantum current generator. We demonstrate that currents generated
in the milliampere range are quantized in terms of
( is the Josephson frequency) with a measurement uncertainty of
. This new quantum current source, able to deliver such accurate
currents down to the microampere range, can greatly improve the current
measurement traceability, as demonstrated with the calibrations of digital
ammeters. Beyond, it opens the way to further developments in metrology and in
fundamental physics, such as a quantum multimeter or new accurate comparisons
to single electron pumps.Comment: 15 pages, 4 figure
Inflationary RSII Model with a Matter in the Bulk and Exponential Potential of Tachyon Field
In this paper we study a tachyon cosmological model based on dynamics of a
3-brane in the second Randall-Sundrum (RSII) model extended to include matter
in the bulk. The presence of matter in the bulk changes warp factor which leads
to modification of inflationary dynamics. The additional brane behaves
effectively as a tachyon. We calculate numerically observation parameters of
inflation: the scalar spectral index () and the tensor-to-scalar ratio
() for the exponential potential of tachyon field.Comment: 9 pages, 1 figure, will be published in the Special Issue of Facta
Universitatis, Series: Physics, Chemistry and Technology devoted to the
SEENET-MTP Balkan Workshop BSW2018 (3-14 June 2018
Numerical Calculation of Hubble Hierarchy Parameters and Observational Parameters of Inflation
We present results obtained by a software we developed for computing
observational cosmological inflation parameters: the scalar spectral index
() and the tensor-to-scalar ratio () for a standard single field and
tachyon inflation, as well as for a tachyon inflation in the second
Randall-Sundrum model with an additional radion field. The calculated numerical
values of observational parameters are compared with the latest results of
observations obtained by the Planck Collaboration. The program is written in
C/C++. The \textit{GNU Scientific Library} is used for some of the numerical
computations and R language is used for data analysis and plots.Comment: 8 pages, 5 figures, based on talk presented at The 10th Jubilee
Conference of the Balkan Physical Union (BPU10), 26-30 August 2018 (Sofia,
Bulgaria
Constrained Dynamics of Tachyon Field in FRWL Spacetime
In this paper we continue study of tachyon scalar field described by a
Dirac-Born-Infeld (DBI) type action with constraints in the cosmological
context. The proposed extension of the system introducing an auxiliary field in
the minisuperspace framework is discussed. A new equivalent set of constraints
is constructed, satisfying the usual regularity conditions.Comment: 10 pages, to be published in the Special Issue of the Facta
Universitatis Series: Physics, Chemistry and Technology devoted to the
SEENET-MTP Balkan Workshop BSW2019 (3-14 June 2018, Nis, Serbia
Food for thought: a university-wide approach to stimulate curricular and extra-curricular ESD activity
Quantitative subsurface defect detection in composite materials using a non-contact ultrasonic system
The results of an experimental study conducted to detect subsurface defects in a thick Gr/PPS composite test sample using a non-contact ultrasonic system are presented. Surface waves are generated by a pulsed laser and detected by a air-coupled capacitance transducer. By controlling the surface wave wavelength through a shadow mask, it is possible to control surface wave penetration depth in the sample. Surface wave peak-to-peak amplitude is related to the near-surface material condition. Results indicate that signal amplitude decreases as the width of the defect increases and an approximately linear relation can be deduced
- …
