1,367 research outputs found

    Implications of the Partial Width Z->bb for Supersymmetry Searches and Model-Building

    Full text link
    Assuming that the actual values of the top quark mass at FNAL and of the ratio of partial widths Z->bb/Z->hadrons at LEP are within their current one-sigma reported ranges, we present a No-Lose Theorem for superpartner searches at LEP II and an upgraded Tevatron. We impose only two theoretical assumptions: the Lagrangian is that of the Minimal Supersymmetric Standard Model with arbitrary soft-breaking terms, and all couplings remain perturbative up to scales of order 10^16 GeV; there are no assumptions about the soft SUSY breaking parameters, proton decay, cosmology, etc. In particular, if the LEP and FNAL values hold up and supersymmetry is responsible for the discrepancy with the SM prediction of the partial width of Z->bb, then we must have charginos and/or top squarks observable at the upgraded machines. Furthermore, little deviation from the SM is predicted within "super-unified" SUSY. Finally, it appears to be extremely difficult to find any unified MSSM model, regardless of the form of soft SUSY breaking, that can explain the partial width for large tan(beta); in particular, no model with top-bottom-tau Yukawa coupling unification appears to be consistent with the experiments.Comment: 15 pages, University of Michigan preprint UM-TH-94-23. LaTeX file with 4 uuencoded figures sent separately. Compressed PS file (114Kb) available by anonymous FTP from 141.211.96.66 in /pub/preprints/UM-TH-94-23.ps.

    The Search for Higgs particles at high-energy colliders: Past, Present and Future

    Full text link
    I briefly review the Higgs sector in the Standard Model and its minimal Supersymmetric extension, the MSSM. After summarizing the properties of the Higgs bosons and the present experimental constraints, I will discuss the prospects for discovering these particle at the upgraded Tevatron, the LHC and a high-energy e+ee^+e^- linear collider. The possibility of studying the properties of the Higgs particles will be then summarized.Comment: 28 pages, latex, 15 figures, talk at WHEPP VII, Allahabad, Indi

    Higgs Physics at Future Colliders: recent theoretical developments

    Full text link
    I review the physics of the Higgs sector in the Standard Model and its minimal supersymmetric extension, the MSSM. I will discuss the prospects for discovering the Higgs particles at the upgraded Tevatron, at the Large Hadron Collider, and at a future high--energy e+ee^+e^- linear collider with centre--of--mass energy in the 350--800 GeV range, as well as the possibilities for studying their fundamental properties. Some emphasis will be put on the theoretical developments which occurred in the last two years.Comment: 20 pages, latex, 12 figures. Talk given at PASCOS 2003 (Bombay, India

    Probing a Mixed Neutralino Dark Matter Model at the 7 TeV LHC

    Full text link
    We have analyzed the prospect of probing a non-universal gaugino mass model of mixed bino-higgsino dark matter at the current 7 TeV run of LHC. It provides cosmologically compatible dark matter relic density over two broad bands of parameters, corresponding to m_{\gl} < m_{\sq} and m_{\gl} \sim m_{\sq}. The SUSY spectrum of this model has two distinctive features : (i) an approximate degeneracy among the lighter chargino and neutralino masses, and (ii) an inverted mass hierarchy of squark masses. We find that these features can be exploited to obtain a viable signal upto m_{\gl} \sim 800 GeV over both the parameter bands with an integrated luminosity 5/fb.Comment: Latex, 15 pages, one figur

    Higgs Physics: Theory

    Full text link
    I review the theoretical aspects of the physics of Higgs bosons, focusing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, I discuss Higgs production at the LHC and at the Tevatron, with some focus on the main production mechanism, the gluon-gluon fusion process, and summarize the main Higgs decay modes and the experimental detection channels. I then briefly survey the case of the minimal supersymmetric extension of the Standard Model. In a last section, I review the prospects for determining the fundamental properties of the Higgs particles once they have been experimentally observed.Comment: 21 pages, 15 figures. Talk given at the XXV International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27 August 2011, Mumbai, Indi

    On the asymptotic O(ααS){\cal O}(\alpha \alpha_S) behavior of the electroweak gauge bosons vacuum polarization functions for arbitrary quark masses

    Full text link
    We derive the QCD corrections to the electroweak gauge bosons vacuum polarization functions at high and zero--momentum transfer in the case of arbitrary internal quark masses. We then discuss in this general case (i) the connection between the O(ααS)O(\alpha \alpha_S) calculations of the vector bosons self--energies using dimensional regularization and the one performed via a dispersive approach and (ii) the QCD corrections to the ρ\rho parameter for a heavy quark isodoublet.Comment: 14 pages + 2 figures (not included: available by mail from A. Djouadi), Preprint UdeM-LPN-TH-93-156 and NYU-TH-93/05/0

    Higgs boson interactions in supersymmetric theories with large tan beta

    Get PDF
    We show that radiative corrections to the Higgs potential in supersymmetric theories with large tan beta generically lead to large differences in the light Higgs boson decay branching fractions compared to those of the standard model Higgs boson. In contrast, the light Higgs boson production rates are largely unaffected. We identify W h associated production followed by Higgs boson decays to photons or to leptons via W W* as potential experimental probes of these theories.Comment: 11 pages, 4 figure

    CP--violating Chargino Contributions to the Higgs Coupling to Photon Pairs in the Decoupling Regime of Higgs Sector

    Full text link
    In most supersymmetric theories, charginos χ~1,2±\tilde{\chi}^\pm_{1,2} belong to the class of the lightest supersymmetric particles and the couplings of Higgs bosons to charginos are in general complex so that the CP--violating chargino contributions to the loop--induced coupling of the lightest Higgs boson to photon pairs can be sizable even in the decoupling limit of large pseudoscalar mass mAm_A with only the lightest Higgs boson kinematically accessible at future high energy colliders. We introduce a specific benchmark scenario of CP violation consistent with the electric dipole moment constraints and with a commonly accepted baryogenesis mechanism in the minimal supersymmetric Standard Model. Based on the benchmark scenario of CP violation, we demonstrate that the fusion of the lightest Higgs boson in linearly polarized photon--photon collisions can allow us to confirm the existence of the CP--violating chargino contributions {\it even in the decoupling regime of the Higgs sector} for nearly degenerate SU(2) gaugino and higgsino mass parameters of about the electroweak scale.Comment: 1+13 pages, 3 eps figure

    Non-Universal Gaugino Masses, CDMS, and the LHC

    Full text link
    We consider the possibility that the recently reported events at the CDMS-II direct dark matter detection experiment are the result of coherent scattering of supersymmetric neutralinos. In such a scenario we argue that non-universal soft supersymmetry breaking gaugino masses are favored with a resulting lightest neutralino with significant Higgsino and wino components. We discuss the accompanying signals which must be seen at liquid-xenon direct detection experiments and indirect detection experiments if such a supersymmetric interpretation is to be maintained. We illustrate the possible consequences for early discovery channels at the LHC via a set of benchmark points designed to give rise to an observed event rate comparable to the reported CDMS-II data.Comment: Typos corrected and references adde
    corecore