986 research outputs found
Caracterização de resíduos gerados em análises químicas de tecidos vegetais.
Este trabalho apresenta a caracterização dos resíduos gerados em análises químicas de tecidos vegetais do Laboratório de Análises de Solos e Plantas - LASP da Embrapa Amazônia Ocidental
Diagnóstico rápido participativo (DRP) como método de avaliação do programa de gerenciamento de resíduos laboratoriais (PGRL).
Na Embrapa, o DRP vem sendo utilizado pelo grupo de educação ambiental que adaptou o nome Diagnóstico Rural Participativo para Diagnóstico Rápido Participativo
Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Data Handling Overview
The GLAST Balloon Flight Engineering Model (BFEM) represents one of 16 towers
that constitute the Large Area Telescope (LAT), a high-energy (>20 MeV)
gamma-ray pair-production telescope being built by an international partnership
of astrophysicists and particle physicists for a satellite launch in 2006. The
prototype tower consists of a Pb/Si pair-conversion tracker (TKR), a CsI
hodoscopic calorimeter (CAL), an anti-coincidence detector (ACD) and an
autonomous data acquisition system (DAQ). The self-triggering capabilities and
performance of the detector elements have been previously characterized using
positron, photon and hadron beams. External target scintillators were placed
above the instrument to act as sources of hadronic showers. This paper provides
a comprehensive description of the BFEM data-reduction process, from receipt of
the flight data from telemetry through event reconstruction and background
rejection cuts. The goals of the ground analysis presented here are to verify
the functioning of the instrument and to validate the reconstruction software
and the background-rejection scheme.Comment: 5 pages, 4 figures, to be published in IEEE Transacations on Nuclear
Science, August 200
Performance of a Low Noise Front-end ASIC for Si/CdTe Detectors in Compton Gamma-ray Telescope
Compton telescopes based on semiconductor technologies are being developed to
explore the gamma-ray universe in an energy band 0.1--20 MeV, which is not well
covered by the present or near-future gamma-ray telescopes. The key feature of
such Compton telescopes is the high energy resolution that is crucial for high
angular resolution and high background rejection capability. The energy
resolution around 1 keV is required to approach physical limit of the angular
resolution due to Doppler broadening. We have developed a low noise front-end
ASIC (Application-Specific Integrated Circuit), VA32TA, to realize this goal
for the readout of Double-sided Silicon Strip Detector (DSSD) and Cadmium
Telluride (CdTe) pixel detector which are essential elements of the
semiconductor Compton telescope. We report on the design and test results of
the VA32TA. We have reached an energy resolution of 1.3 keV (FWHM) for 60 keV
and 122 keV at 0 degree C with a DSSD and 1.7 keV (FWHM) with a CdTe detector.Comment: 6 pages, 7 figures, IEEE style file, to appear in IEEE Trans. Nucl.
Sc
Controle biológico do psilídeo-de-concha (Glycaspis Brimblecombei) (Hemiptera: Psyllidae) em florestas de eucalipto.
Monte Carlo Simulation of Massive Absorbers for Cryogenic Calorimeters
There is a growing interest in cryogenic calorimeters with macroscopic absorbers for applications such as dark matter direct detection and rare event search experiments. The physics of energy transport in calorimeters with absorber masses exceeding several grams is made complex by the anisotropic nature of the absorber crystals as well as the changing mean free paths as phonons decay to progressively lower energies. We present a Monte Carlo model capable of simulating anisotropic phonon transport in cryogenic crystals. We have initiated the validation process and discuss the level of agreement between our simulation and experimental results reported in the literature, focusing on heat pulse propagation in germanium. The simulation framework is implemented using Geant4, a toolkit originally developed for high-energy physics Monte Carlo simulations. Geant4 has also been used for nuclear and accelerator physics, and applications in medical and space sciences. We believe that our current work may open up new avenues for applications in material science and condensed matter physics.United States. Dept. of Energy (SLAC National Accelerator Laboratory. Contract DE-AC02-76SF00515
Results from a Low-Energy Analysis of the CDMS II Germanium Data
We report results from a reanalysis of data from the Cryogenic Dark Matter
Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken
between October 2006 and September 2008 using eight germanium detectors are
reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased
sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs)
with masses below ~10 GeV/c^2. This analysis provides stronger constraints than
previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter
space associated with possible low-mass WIMP signals from the DAMA/LIBRA and
CoGeNT experiments.Comment: 9 pages, 8 figures. Supplemental material included as ancillary
files. v3) Added appendix with additional details regarding energy scale and
background
Validation of Phonon Physics in the CDMS Detector Monte Carlo
The SuperCDMS collaboration is a dark matter search effort aimed at detecting
the scattering of WIMP dark matter from nuclei in cryogenic germanium targets.
The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at
achieving a deeper understanding of the performance of the SuperCDMS detectors
and aiding the dark matter search analysis. We present results from validation
of the phonon physics described in the CDMS-DMC and outline work towards
utilizing it in future WIMP search analyses.Comment: 6 Pages, 5 Figures, Proceedings of Low Temperature Detectors 14
Conferenc
Performance of Long Modules of Silicon Microstrip Detectors
This note describes the performance of modules assembled with up to twelve silicon microstrip detectors. These modules were built for the instrumented Silicon Target (STAR) that has been installed in the NOMAD spectrometer. Laboratory and test beam results are compared with model predictions. For a module of nine detectors, test beam results indicate a signal--to--noise ratio of 19, a hit finding efficiency of 99.8\% and a spatial resolution of 6.0 m. Laboratory measurements indicate that modules of twelve detectors exhibit a signal--to--noise ratio of the order of 16
- …
