128 research outputs found
Trains, tails and loops of partially adsorbed semi-flexible filaments
Polymer adsorption is a fundamental problem in statistical mechanics that has
direct relevance to diverse disciplines ranging from biological lubrication to
stability of colloidal suspensions. We combine experiments with computer
simulations to investigate depletion induced adsorption of semi-flexible
polymers onto a hard-wall. Three dimensional filament configurations of
partially adsorbed F-actin polymers are visualized with total internal
reflection fluorescence microscopy. This information is used to determine the
location of the adsorption/desorption transition and extract the statistics of
trains, tails and loops of partially adsorbed filament configurations. In
contrast to long flexible filaments which primarily desorb by the formation of
loops, the desorption of stiff, finite-sized filaments is largely driven by
fluctuating filament tails. Simulations quantitatively reproduce our
experimental data and allow us to extract universal laws that explain scaling
of the adsorption-desorption transition with relevant microscopic parameters.
Our results demonstrate how the adhesion strength, filament stiffness, length,
as well as the configurational space accessible to the desorbed filament can be
used to design the characteristics of filament adsorption and thus engineer
properties of composite biopolymeric materials
Radius and chirality dependent conformation of polymer molecule at nanotube interface
Temperature dependent conformations of linear polymer molecules adsorbed at
carbon nanotube (CNT) interfaces are investigated through molecule dynamics
simulations. Model polyethylene (PE) molecules are shown to have selective
conformations on CNT surface, controlled by atomic structures of CNT lattice
and geometric coiling energy. PE molecules form entropy driven assembly
domains, and their preferred wrapping angles around large radius CNT (40, 40)
reflect the molecule configurations with energy minimums on a graphite plane.
While PE molecules prefer wrapping on small radius armchair CNT (5, 5)
predominantly at low temperatures, their configurations are shifted to larger
wrapping angle ones on a similar radius zigzag CNT (10, 0). A nematic
transformation around 280 K is identified through Landau-deGennes theory, with
molecule aligning along tube axis in extended conformationsComment: 19 pages, 7 figure2, submitted to journa
Enhanced stability of layered phases in parallel hard-spherocylinders due to the addition of hard spheres
There is increasing evidence that entropy can induce microphase separation in
binary fluid mixtures interacting through hard particle potentials. One such
phase consists of alternating two dimensional liquid-like layers of rods and
spheres. We study the transition from a uniform miscible state to this ordered
state using computer simulations and compare results to experiments and theory.
We conclude that (1) there is stable entropy driven microphase separation in
mixtures of parallel rods and spheres, (2) adding spheres smaller then the rod
length decreases the total volume fraction needed for the formation of a
layered phase, therefore small spheres effectively stabilize the layered phase;
the opposite is true for large spheres and (3) the degree of this stabilization
increases with increasing rod length.Comment: 11 pages, 9 figures. Submitted to Phys. Rev. E. See related website
http://www.elsie.brandeis.ed
Elongation and fluctuations of semi-flexible polymers in a nematic solvent
We directly visualize single polymers with persistence lengths ranging from
to 16 m, dissolved in the nematic phase of rod-like {\it fd}
virus. Polymers with sufficiently large persistence length undergo a coil-rod
transition at the isotropic-nematic transition of the background solvent. We
quantitatively analyze the transverse fluctuations of semi-flexible polymers
and show that at long wavelengths they are driven by the fluctuating nematic
background. We extract both the Odijk deflection length and the elastic
constant of the background nematic phase from the data.Comment: 4 pages, 4 figures, submitted to PR
Parity Breaking in Nematic Tactoids
We theoretically investigate under what conditions the director field in a
spindle-shaped nematic droplet or tactoid obtains a twisted, parity-broken
structure. By minimizing the sum of the bulk elastic and surface energies, we
show that a twisted director field is stable if the twist and bend elastic
constants are small enough compared to the splay elastic constant, but only if
the droplet volume is larger than some minimum value. We furthermore show that
the transition from an untwisted to a twisted director-field structure is a
sharp function of the various control parameters. We predict that suspensions
of rigid, rod-like particles cannot support droplets with a parity broken
structure, whereas they could possibly occur in those of semi-flexible,
worm-like particles.Comment: 20 pages, 9 figures, submitted to Journal of Physics: Condensed
Matte
Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran
We present an experimental study of the isotropic-nematic phase transition in
an aqueous mixture of charged semi-flexible rods (fd virus) and neutral polymer
(Dextran). A complete phase diagram is measured as a function of ionic strength
and polymer molecular weight. At high ionic strength we find that adding
polymer widens the isotropic-nematic coexistence region with polymers
preferentially partitioning into the isotropic phase, while at low ionic
strength the added polymer has no effect on the phase transition. The nematic
order parameter is determined from birefringence measurements and is found to
be independent of polymer concentration (or equivalently the strength of
attraction). The experimental results are compared with the existing
theoretical predictions for the isotropic-nematic transition in rods with
attractive interactions.Comment: 8 Figures. To be published in Phys. Rev. E. For more information see
http://www.elsie.brandeis.ed
Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material
We report on experiments to measure the temporal and spatial evolution of
packing arrangements of anisotropic, cylindrical granular material, using
high-resolution capacitive monitoring. In these experiments, the particle
configurations start from an initially disordered, low-packing-fraction state
and under vertical vibrations evolve to a dense, highly ordered, nematic state
in which the long particle axes align with the vertical tube walls. We find
that the orientational ordering process is reflected in a characteristic, steep
rise in the local packing fraction. At any given height inside the packing, the
ordering is initiated at the container walls and proceeds inward. We explore
the evolution of the local as well as the height-averaged packing fraction as a
function of vibration parameters and compare our results to relaxation
experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure
Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes
In the presence of a non-adsorbing polymer, monodisperse rod-like particles
assemble into colloidal membranes, which are one rod-length thick liquid-like
monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal
monolayer membranes form open structures with an exposed edge, thus presenting
an opportunity to study physics of thin elastic sheets. Membranes assembled
from single-component chiral rods form flat disks with uniform edge twist. In
comparison, membranes comprised of mixture of rods with opposite chiralities
can have the edge twist of either handedness. In this limit disk-shaped
membranes become unstable, instead forming structures with scalloped edges,
where two adjacent lobes with opposite handedness are separated by a
cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp
defects alternatively located above and below the membrane plane. In the
achiral regime the cusp defects have repulsive interactions, but away from this
limit we measure effective long-ranged attractive binding. A phenomenological
model shows that the increase in the edge energy of scalloped membranes is
compensated by concomitant decrease in the deformation energy due to Gaussian
curvature associated with scalloped edges, demonstrating that colloidal
membranes have positive Gaussian modulus. A simple excluded volume argument
predicts the sign and magnitude of the Gaussian curvature modulus that is in
agreement with experimental measurements. Our results provide insight into how
the interplay between membrane elasticity, geometrical frustration and achiral
symmetry breaking can be used to fold colloidal membranes into 3D shapes.Comment: Main text: 25 pages, 6 figures. Supplementary information: 6 pages, 6
figure
- …
