128 research outputs found

    Trains, tails and loops of partially adsorbed semi-flexible filaments

    Full text link
    Polymer adsorption is a fundamental problem in statistical mechanics that has direct relevance to diverse disciplines ranging from biological lubrication to stability of colloidal suspensions. We combine experiments with computer simulations to investigate depletion induced adsorption of semi-flexible polymers onto a hard-wall. Three dimensional filament configurations of partially adsorbed F-actin polymers are visualized with total internal reflection fluorescence microscopy. This information is used to determine the location of the adsorption/desorption transition and extract the statistics of trains, tails and loops of partially adsorbed filament configurations. In contrast to long flexible filaments which primarily desorb by the formation of loops, the desorption of stiff, finite-sized filaments is largely driven by fluctuating filament tails. Simulations quantitatively reproduce our experimental data and allow us to extract universal laws that explain scaling of the adsorption-desorption transition with relevant microscopic parameters. Our results demonstrate how the adhesion strength, filament stiffness, length, as well as the configurational space accessible to the desorbed filament can be used to design the characteristics of filament adsorption and thus engineer properties of composite biopolymeric materials

    Radius and chirality dependent conformation of polymer molecule at nanotube interface

    Full text link
    Temperature dependent conformations of linear polymer molecules adsorbed at carbon nanotube (CNT) interfaces are investigated through molecule dynamics simulations. Model polyethylene (PE) molecules are shown to have selective conformations on CNT surface, controlled by atomic structures of CNT lattice and geometric coiling energy. PE molecules form entropy driven assembly domains, and their preferred wrapping angles around large radius CNT (40, 40) reflect the molecule configurations with energy minimums on a graphite plane. While PE molecules prefer wrapping on small radius armchair CNT (5, 5) predominantly at low temperatures, their configurations are shifted to larger wrapping angle ones on a similar radius zigzag CNT (10, 0). A nematic transformation around 280 K is identified through Landau-deGennes theory, with molecule aligning along tube axis in extended conformationsComment: 19 pages, 7 figure2, submitted to journa

    Enhanced stability of layered phases in parallel hard-spherocylinders due to the addition of hard spheres

    Full text link
    There is increasing evidence that entropy can induce microphase separation in binary fluid mixtures interacting through hard particle potentials. One such phase consists of alternating two dimensional liquid-like layers of rods and spheres. We study the transition from a uniform miscible state to this ordered state using computer simulations and compare results to experiments and theory. We conclude that (1) there is stable entropy driven microphase separation in mixtures of parallel rods and spheres, (2) adding spheres smaller then the rod length decreases the total volume fraction needed for the formation of a layered phase, therefore small spheres effectively stabilize the layered phase; the opposite is true for large spheres and (3) the degree of this stabilization increases with increasing rod length.Comment: 11 pages, 9 figures. Submitted to Phys. Rev. E. See related website http://www.elsie.brandeis.ed

    Elongation and fluctuations of semi-flexible polymers in a nematic solvent

    Get PDF
    We directly visualize single polymers with persistence lengths ranging from p=0.05\ell_p=0.05 to 16 μ\mum, dissolved in the nematic phase of rod-like {\it fd} virus. Polymers with sufficiently large persistence length undergo a coil-rod transition at the isotropic-nematic transition of the background solvent. We quantitatively analyze the transverse fluctuations of semi-flexible polymers and show that at long wavelengths they are driven by the fluctuating nematic background. We extract both the Odijk deflection length and the elastic constant of the background nematic phase from the data.Comment: 4 pages, 4 figures, submitted to PR

    Parity Breaking in Nematic Tactoids

    Full text link
    We theoretically investigate under what conditions the director field in a spindle-shaped nematic droplet or tactoid obtains a twisted, parity-broken structure. By minimizing the sum of the bulk elastic and surface energies, we show that a twisted director field is stable if the twist and bend elastic constants are small enough compared to the splay elastic constant, but only if the droplet volume is larger than some minimum value. We furthermore show that the transition from an untwisted to a twisted director-field structure is a sharp function of the various control parameters. We predict that suspensions of rigid, rod-like particles cannot support droplets with a parity broken structure, whereas they could possibly occur in those of semi-flexible, worm-like particles.Comment: 20 pages, 9 figures, submitted to Journal of Physics: Condensed Matte

    Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran

    Full text link
    We present an experimental study of the isotropic-nematic phase transition in an aqueous mixture of charged semi-flexible rods (fd virus) and neutral polymer (Dextran). A complete phase diagram is measured as a function of ionic strength and polymer molecular weight. At high ionic strength we find that adding polymer widens the isotropic-nematic coexistence region with polymers preferentially partitioning into the isotropic phase, while at low ionic strength the added polymer has no effect on the phase transition. The nematic order parameter is determined from birefringence measurements and is found to be independent of polymer concentration (or equivalently the strength of attraction). The experimental results are compared with the existing theoretical predictions for the isotropic-nematic transition in rods with attractive interactions.Comment: 8 Figures. To be published in Phys. Rev. E. For more information see http://www.elsie.brandeis.ed

    Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material

    Full text link
    We report on experiments to measure the temporal and spatial evolution of packing arrangements of anisotropic, cylindrical granular material, using high-resolution capacitive monitoring. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical vibrations evolve to a dense, highly ordered, nematic state in which the long particle axes align with the vertical tube walls. We find that the orientational ordering process is reflected in a characteristic, steep rise in the local packing fraction. At any given height inside the packing, the ordering is initiated at the container walls and proceeds inward. We explore the evolution of the local as well as the height-averaged packing fraction as a function of vibration parameters and compare our results to relaxation experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure

    Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes

    Get PDF
    In the presence of a non-adsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one rod-length thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study physics of thin elastic sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes comprised of mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.Comment: Main text: 25 pages, 6 figures. Supplementary information: 6 pages, 6 figure
    corecore