263 research outputs found
UHECR observations and lensing in the magnetic field of the Virgo cluster
We discuss how lensing by magnetic fields in galaxy clusters affects
ultrahigh energy cosmic ray (UHECR) observations. As specific example, we use
Virgo together with the cluster magnetic fields obtained earlier in a
constrained simulation of structure formation including MHD processes. We find
that, if M87 is the single source of UHECRs from Virgo, the emitted flux is
strongly anisotropic in the most interesting energy range, (50-100)EeV, and
differs from the average value by a factor five or more for a significant
fraction of observers. Since magnetic lensing is energy dependent, the external
energy spectrum as seen by different observers varies strongly too. These
anisotropies are averaged out in the case that all active galactic nuclei in
Virgo emit UHECRs. In both cases, the anisotropies of the emitted UHECR flux
may introduce an important bias in the interpretation of UHECR data like, e.g.,
the determination of the source density n_s and the source energy spectrum of
UHECRs.Comment: 12 pages, 15 eps figures; v2: extended discussion of modifications in
external energy spectrum, matches version to be publishe
Deep LOFAR observations of the merging galaxy cluster CIZA J2242.8+5301
Previous studies have shown that CIZA J2242.8+5301 (the 'Sausage' cluster, z = 0.192) is a massive merging galaxy cluster that hosts a radio halo and multiple relics. In this paper, we present deep, high-fidelity, low-frequency images made with the LOw-Frequency Array (LOFAR) between 115.5 and 179 MHz. These images, with a noise of 140 μJy beam- 1 and a resolution of θbeam = 7.3 arcsec × 5.3 arcsec, are an order of magnitude more sensitive and five times higher resolution than previous low-frequency images of this cluster. We combined the LOFAR data with the existing Giant Metrewave Radio Telescope (GMRT) (153, 323, 608 MHz) and Westerbork Synthesis Radio Telescope (WSRT) (1.2, 1.4, 1.7, 2.3 GHz) data to study the spectral properties of the radio emission from the cluster. Assuming diffusive shock acceleration (DSA), we found Mach numbers of Mn=2.7{}_{-0.3}^{+0.6} and Ms=1.9_{-0.2}^{+0.3} for the northern and southern shocks. The derived Mach number for the northern shock requires an acceleration efficiency of several percent to accelerate electrons from the thermal pool, which is challenging for DSA. Using the radio data, we characterized the eastern relic as a shock wave propagating outwards with a Mach number of Me=2.4_{-0.3}^{+0.5}, which is in agreement with MeX=2.5{}_{-0.2}^{+0.6} that we derived from Suzaku data. The eastern shock is likely to be associated with the major cluster merger. The radio halo was measured with a flux of 346 ± 64 mJy at 145 MHz. Across the halo, we observed a spectral index that remains approximately constant (α ^{145 MHz-2.3 GHz}_{{across ˜ 1 Mpc}^2}=-1.01± 0.10) after the steepening in the post-shock region of the northern relic. This suggests a generation of post-shock turbulence that re-energies aged electrons
The Coma cluster magnetic field from Faraday rotation measures
The aim of the present work is to constrain the Coma cluster magnetic field
strength, its radial profile and power spectrum by comparing Faraday Rotation
Measure (RM) images with numerical simulations of the magnetic field. We have
analyzed polarization data for seven radio sources in the Coma cluster field
observed with the Very Large Array at 3.6, 6 and 20 cm, and derived Faraday
Rotation Measures with kiloparsec scale resolution. Random three dimensional
magnetic field models have been simulated for various values of the central
intensity B_0 and radial power-law slope eta, where eta indicates how the field
scales with respect to the gas density profile. We derive the central magnetic
field strength, and radial profile values that best reproduce the RM
observations. We find that the magnetic field power spectrum is well
represented by a Kolmogorov power spectrum with minimum scale ~ 2 kpc and
maximum scale ~ 34 kpc. The central magnetic field strength and radial slope
are constrained to be in the range (B_0=3.9 microG; eta=0.4) and (B_0=5.4
microG; eta=0.7) within 1sigma. The best agreement between observations and
simulations is achieved for B_0=4.7 microG; eta=0.5. Values of B_0>7 microG and
1.0 are incompatible with RM data at
99 % confidence level.Comment: 23 pages, 21 figures. Higher resolution available at
http://www.ira.inaf.it/~bonafede/paper.pdf. A&A accepte
An unlikely radio halo in the low X-ray luminosity galaxy cluster RXC J1514.9-1523
We report the discovery of a giant radio halo in the galaxy cluster RXC
J1514.9-1523 at z=0.22 with a relatively low X-ray luminosity, erg s. This faint, diffuse
radio source is detected with the Giant Metrewave Radio Telescope at 327 MHz.
The source is barely detected at 1.4 GHz in a NVSS pointing that we have
reanalyzed. The integrated radio spectrum of the halo is quite steep, with a
slope \alpha = 1.6 between 327 MHz and 1.4 GHz. While giant radio halos are
common in more X-ray luminous cluster mergers, there is a less than 10%
probability to detect a halo in systems with L_X \ltsim 8 \times 10^{44} erg
s. The detection of a new giant halo in this borderline luminosity
regime can be particularly useful for discriminating between the competing
theories for the origin of ultrarelativistic electrons in clusters.
Furthermore, if our steep radio spectral index is confirmed by future deeper
radio observations, this cluster would provide another example of the recently
discovered population of ultra-steep spectrum radio halos, predicted by the
model in which the cluster cosmic ray electrons are produced by turbulent
reacceleration.Comment: 4 pages, 2 figures - Accepted for publication on A&A Research Note
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
The widest frequency radio relic spectra: observations from 150 MHz to 30 GHz
Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intracluster medium electrons are accelerated by cluster merger-induced shock waves through the diffusive shock acceleration mechanism. In this paper, we present observations spanning 150 MHz to 30 GHz of the ‘Sausage’ and ‘Toothbrush’ relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the ≳6σ significance level, supporting the spectral steepening previously found in the ‘Sausage’ and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons
Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals.
Internal dynamics of the galaxy cluster Abell 545
Diffuse radio emission in galaxy clusters, and their connection with cluster
mergers, are still debated. We seek to explore the internal dynamics of the
radio halo cluster Abell 545. This cluster is also peculiar for hosting in its
center a very bright, red, diffuse intracluster light due to an old, stellar
population, so bright to be named as "star pile". Our analysis is based on
redshift data for 110 galaxies. We identify 95 cluster members and analyze the
cluster internal dynamics by combining galaxy velocities and positions. We also
use both photometric and X-ray data. We estimate the cluster redshift,
z=0.1580, a velocity dispersion of 1200 km/s, and ICM temperature kT_X~8 keV.
Our optical and X-ray analyses detect substructures. Optical data reveal three
main galaxy clumps (center, NNW, and NE), and possibly a fourth clump at South.
There is not a dominant galaxy and the four brightest galaxies avoid the
cluster core (>~0.4h distant from the cluster center) and are >~1500 km/s far
from the mean cluster velocity. The analysis of the X-ray surface brightness
distribution provides us evidence of a disturbed dynamical phase. Located in
the star pile region there is the brightest galaxies of the cluster core (CBCG)
and a very compact elliptical galaxy. We show that the star pile has a similar
redshift to that of the CBCG. Both the star pile and the CBCG are at rest in
the cluster rest frame. The emerging picture of Abell 545 is that of a massive,
M(R<1.6 h_70^-1 Mpc)=1.1-1.8x10^15 h_70^-1 Msun, very complex cluster with
merging occurring along two directions. A545 gives another proof in the favor
of the connection between cluster merger and extended, diffuse radio emission.
The star pile, likely due to the process of a brightest galaxy forming in the
cluster core. A545 represents a textbook cluster where to study the
simultaneous formation of a galaxy system and its brightest galaxy.Comment: 16 pages, 11 figures and 2 tables. Accepted in A&
- …
