6,974 research outputs found

    An Infrared study of the Josephson vortex state in high-Tc cuprates

    Full text link
    We report the results of the c-axis infrared spectroscopy of La_{2-x} Sr_x CuO_4 in high magnetic field oriented parallel to the CuO_2 planes. A significant suppression of the superfluid density with magnetic field rho_s(H) is observed for both underdoped (x=0.125) and overdoped (x=0.17) samples. We show that the existing theoretical models of the Josephson vortex state fail to consistently describe the observed effects and discuss possible reasons for the discrepancies

    The fate of quasiparticles in the superconducting state

    Full text link
    Quasiparticle properties in the superconducting state are masked by the superfluid and are not directly accessible to infrared spectroscopy. We show how one can use a Kramers--Kronig transformation to separate the quasiparticle from superfluid response and extract intrinsic quasiparticle properties in the superconducting state. We also address the issue of a narrow quasiparticle peak observed in microwave measurements, and demonstrate how it can be combined with infrared measurements to obtain unified picture of electrodynamic properties of cuprate superconductors

    Heavy fermion fluid in high magnetic fields: an infrared study of CeRu4_4Sb12_{12}

    Full text link
    We report a comprehensive infrared magneto-spectroscopy study of CeRu4_4Sb12_{12} compound revealing quasiparticles with heavy effective mass m^*, with a detailed analysis of optical constants in fields up to 17 T. We find that the applied magnetic field strongly affects the low energy excitations in the system. In particular, the magnitude of m^* \simeq 70 mb_b (mb_b is the quasiparticle band mass) at 10 K is suppressed by as much as 25 % at 17 T. This effect is in quantitative agreement with the mean-field solution of the periodic Anderson model augmented with a Zeeman term

    Extracting the electron--boson spectral function α2\alpha^2F(ω\omega) from infrared and photoemission data using inverse theory

    Full text link
    We present a new method of extracting electron-boson spectral function α2\alpha^2F(ω\omega) from infrared and photoemission data. This procedure is based on inverse theory and will be shown to be superior to previous techniques. Numerical implementation of the algorithm is presented in detail and then used to accurately determine the doping and temperature dependence of the spectral function in several families of high-Tc_c superconductors. Principal limitations of extracting α2\alpha^2F(ω\omega) from experimental data will be pointed out. We directly compare the IR and ARPES α2\alpha^2F(ω\omega) and discuss the resonance structure in the spectra in terms of existing theoretical models

    Strong-coupling Effects in cuprate High-TcT_{c} Superconductors by magnetooptical studies

    Full text link
    Signatures of strong coupling effects in cuprate high-TcT_{c} superconductors have been authenticated through a variety of spectroscopic probes. However, the microscopic nature of relevant excitations has not been agreed upon. Here we report on magneto-optical studies of the CuO2_{2} plane carrier dynamics in a prototypical high-TcT_{c} superconductor YBa%_{2} Cu3_{3}Oy_{y} (YBCO). Infrared data are directly compared with earlier inelastic neutron scattering results by Dai \textit{et al}. [Nature (London) \textbf{406}, 965 (2000)] revealing a characteristic depression of the magnetic resonance in H \parallel \textit{c} field less than 7 T. This analysis has allowed us to critically assess the role of magnetic degrees of freedom in producing strong coupling effects for YBCO system.Comment: 4 pages, two figure

    The Missing Link: Magnetism and Superconductivity

    Full text link
    The effect of magnetic moments on superconductivity has long been a controversial subject in condensed matter physics. While Matthias and collaborators experimentally demonstrated the destruction of superconductivity in La by the addition of magnetic moments (Gd), it has since been suggested that magnetic fluctuations are in fact responsible for the development of superconducting order in other systems. Currently this debate is focused on several families of unconventional superconductors including high-Tc cuprates, borocarbides as well as heavy fermion systems where magnetism and superconductivity are known to coexist. Here we report a novel aspect of competition and coexistence of these two competing orders in an interesting class of heavy fermion compounds, namely the 1-1-5 series: CeTIn5 where T=Co, Ir, or Rh. Our optical experiments indicate the existence of regions in momentum space where local moments remain unscreened. The extent of these regions in momentum space appears to control both the normal and superconducting state properties in the 1-1-5 family of heavy fermion (HF) superconductors.Comment: 6 pages, 2 figure

    Optical conductivity of filled skutterudites

    Full text link
    A simple tight-binding model is constructed for the description of the electronic structure of some Ce-based filled skutterudite compounds showing an energy gap or pseudogap behavior. Assuming band-diagonal electron interactions on this tight-binding model, the optical conductivity spectrum is calculated by applying the second-order self-consistent perturbation theory to treat the electron correlation. The correlation effect is found to be of great importance on the description of the temperature dependence of the optical conductivity. The rapid disappearance of an optical gap with increasing temperature is obtained as observed in the optical experiment for Ce-based filled-skutterudite compounds.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn. Vol.73, No.10 (2004
    corecore