1,694 research outputs found
MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors
The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
Piloting online self-audit of methadone treatment in Irish general practice: results, reflections and educational outcomes
Background: Work based learning underpins the training and CPD of medical practitioners. Medical audit operates on two levels; individual self-assessment and professional/practice development. In Ireland, annual practice improvement audit is an essential requirement for the successful completion of continuous professional development (CPD) as determined by the regulatory body, the Irish Medical Council. All general practice (GP) doctors providing methadone maintenance treatment (MMT) in Ireland have a contractual obligation to partake in a yearly methadone practice audit. The Irish College of General Practitioners (ICGP) as national training provider is tasked to facilitate this annual audit process. The purpose of this audit is to assess the quality of care provided to patients against an agreed set of national standards, enhance learning, and promote practice improvement and reflective practice. The aim was to present an online MTP self-audit and evaluate results from a 12-month pilot among GPs providing MMT in Ireland.
Method A mixed method study describing three phases (design and development, pilot/implementation and evaluation) of a new online self –audit tool was conducted. Descriptive and thematic analysis of audit and evaluation data was conducted.
Results: Survey Monkey is a suitable software package for the development and hosting of an easy to use online audit for MMT providing doctors. Analysis of the audit results found that the majority of GPs scored 80% or over for the 25 identified essential criteria for MMT provision. The evaluation of the GP audit experience underscores the positive outcomes of the online self-audit in terms of improving practice systems, encouraging reflective practice, enhanced patient care and doctor commitment to continued provision of MMT in addiction clinics and in primary care.
Conclusions: Results from this audit demonstrate a high level of compliance with best practise MMT guidelines by Irish GPs providing MMT. The online self-audit process was well received and encouraged reflective practice. The audit process hinged on the individual GP’s ability to review and critically analyse their professional practice, and manage change. This model of audit could be adapted and used to monitor the management of other chronic illnesses in general practice
Foreign policy beliefs and support for Stephen Harper and the Conservative Party
Similar to other recent Canadian elections, foreign policy did not feature prominently in the 2011 federal election campaign. In fact, many doubt Canadian public opinion on international affairs is linked to the actions taken by recent Governments. In this paper, we examine Canadian public opinion toward a range of foreign policy issues and argue that the survey questions measure two latent dimensions —militarism and internationalism. Our survey evidence indicates the existence of an “issue public” which is prepared to endorse military action and is skeptical of human rights and overseas aid programs, and this group is far more supportive of Prime Minister Harper and the Conservative Party than other Canadians. The absence of an elite discussion, either among politicians or between media elites, about the direction of Canadian foreign policy does not prevent the Canadian voter from thinking coherently about questions pertaining to this issue domain and employing these beliefs to support or oppose political parties and their leaders
MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors
Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798
Strong constraints on the rare decays Bs -> mu+ mu- and B0 -> mu+ mu-
A search for Bs -> mu+ mu- and B0 -> mu+ mu- decays is performed using 1.0
fb^-1 of pp collision data collected at \sqrt{s}=7 TeV with the LHCb experiment
at the Large Hadron Collider. For both decays the number of observed events is
consistent with expectation from background and Standard Model signal
predictions. Upper limits on the branching fractions are determined to be BR(Bs
-> mu+ mu-) mu+ mu-) < 1.0 (0.81) x 10^-9 at
95% (90%) confidence level.Comment: 2+6 pages; 4 figures; Accepted for publication in Physical Review
Letter
Interim Design Report
The International Design Study for the Neutrino Factory (the IDS-NF) was
established by the community at the ninth "International Workshop on Neutrino
Factories, super-beams, and beta- beams" which was held in Okayama in August
2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for
the facility on the timescale of 2012/13. In addition, the mandate for the
study [3] requires an Interim Design Report to be delivered midway through the
project as a step on the way to the RDR. This document, the IDR, has two
functions: it marks the point in the IDS-NF at which the emphasis turns to the
engineering studies required to deliver the RDR and it documents baseline
concepts for the accelerator complex, the neutrino detectors, and the
instrumentation systems. The IDS-NF is, in essence, a site-independent study.
Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific
issues to be addressed in the cost analysis that will be presented in the RDR.
The choice of example sites should not be interpreted as implying a preferred
choice of site for the facility
The new ALEPH Silicon Vertex Detector
The ALEPH collaboration, in view of the importance of effective vertex detection for the Higgs boson search at LEP 2, decided to upgrade the previous vertex detector. Main changes were an increased length (±20 cm), a higher granularity for rφ view (50 µm), a new preamplifier (MX7 rad hard chip), a polymide (upilex) fan-out on z side to carry the signals from the strips to the front-end electronics outside the fiducial region reducing consequently the passive material in the central region by a factor of two. The detector, the running experience and its performance will be described
- …
